ON A GENERALIZED JORDAN-VON NEUMANN TYPE CONSTANT AND NORMAL STRUCTURE

被引:1
作者
Tang, Li [1 ]
Ji, Donghai [2 ]
Wang, Xiaomei [2 ]
机构
[1] Jingchu Univ Technol, Sch Math & Phys Sci, Jingmen 448000, Peoples R China
[2] Harbin Univ Sci & Technol, Dept Appl Math, Harbin 150080, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2024年 / 27卷 / 02期
关键词
Banach space; normal structure; Jordan-von Neumann type constant; generalized Jordan-von Neumann type constant; SUFFICIENT CONDITIONS; BANACH-SPACES; FIXED-POINTS; MAPPINGS;
D O I
10.7153/mia-2024-27-25
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new geometric constant C--infinity((p)) (a,X) , which is closely related to the generalized Jordan-von Neumann type constant. We show that 2 and (a+2)(p)/2(p-2) (2(p) + a(p)) are the upper and lower bound for C--infinity((p)) (a,X) , respectively. Moreover, we obtain that C--infinity((p)) (a, X) = C--infinity((p)), (a, X-similar to) , where X-similar to is the ultrapower space of X . Subsequently, we give some sufficient conditions for normal structure of a Banach space with different constants, such as the generalized James constant, Dom & imath;nguez-Benavides coefficient and the coefficient of weak orthogonality.
引用
收藏
页码:347 / 359
页数:13
相关论文
共 25 条