Optical pumping for high-power ultrashort LWIR gas lasers

被引:0
作者
Chen, Yu-Hsin [1 ]
Hasson, Victor [2 ,3 ]
Gordon, Daniel [1 ]
Richardson, Martin [4 ]
机构
[1] Naval Res Lab, Plasma Phys Div, 4555 Overlook Ave SW, Washington, DC 20375 USA
[2] Envisioneering Inc, 5904 Richmond Hwy,Ste 600, Alexandria, VA 22303 USA
[3] Univ Arizona, Wyant Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA
[4] Univ Cent Florida, Townes Laser Inst, Coll Opt & Photon, 4304 Scorpius St, Orlando, FL 32816 USA
来源
HIGH-POWER LASER ABLATION VIII | 2024年 / 12939卷
关键词
CO2; lasers; N2O lasers; mid-IR; long-wave infrared (LWIR); stimulated Raman scattering; femtosecond; picosecond; terawatt; PEAK POWER;
D O I
10.1117/12.3012593
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Long-wave infrared (LWIR) lasers based on high-voltage pulsed discharges in the high-pressure CO2 gas have reached multi-TW peak power. As optical pumping appears to be a more viable pathway toward ultrahigh power and high repetition rate, we investigated multiple apparatus including direct and indirect optical pumping. Indirect optical pumping through stimulated Raman scattering in N-2 gas could be efficient, and is relatively insensitive to the pump wavelength. On the other hand, laser technologies for direct optical pumping have higher maturity levels at wavelengths of similar to 1.4 mu m and similar to 2.0 mu m among multiple excitation bands in the mid-IR wavelength.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Determination of nitrogen V-V transfer rates by stimulated Raman pumping [J].
Ahn, T ;
Adamovich, IV ;
Lempert, WR .
CHEMICAL PHYSICS, 2004, 298 (1-3) :233-240
[2]   GW-high pressure CO2-N2O laser with optical pumping [J].
Arsenjev, AV ;
Azarov, MA ;
Burtsev, AP ;
Drozdov, VA ;
Mashendzhinov, VI ;
Sudarikov, VV ;
Troshchinenko, GA .
LASER OPTICS 2003: HIGH-POWER GAS LASERS, 2003, 5479 :141-146
[3]   HIGH VIBRATIONAL TEMPERATURES IN OPTICALLY-PUMPED CO2 [J].
AUYEUNG, RCY ;
REID, J .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24 (03) :573-579
[4]  
Averbakh V. S., 1978, Soviet Journal of Quantum Electronics, V8, P472, DOI 10.1070/QE1978v008n04ABEH010057
[5]  
Banerjee S., 2024, SPIE Photonics West, paper 12864-17
[6]   Continuous melting of phosphate laser glasses [J].
Campbell, JH ;
Suratwala, TI ;
Thorsness, CB ;
Hayden, JS ;
Thorne, AJ ;
Cimino, JM ;
Marker, AJ ;
Takeuchi, K ;
Smolley, M ;
Ficini-Dorn, GF .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 263 (1-4) :342-357
[7]   OPTICALLY PUMPED 33-ATM CO2-LASER [J].
CHANG, TY ;
WOOD, OR .
APPLIED PHYSICS LETTERS, 1973, 23 (07) :370-372
[8]   Intense infrared lasers for strong-field science [J].
Chang, Zenghu ;
Fang, Li ;
Fedorov, Vladimir ;
Geiger, Chase ;
Ghimire, Shambhu ;
Heide, Christian ;
Ishii, Nobuhisa ;
Itatani, Jiro ;
Joshi, Chandrashekhar ;
Kobayashi, Yuki ;
Kumar, Prabhat ;
Marra, Alphonse ;
Mirov, Sergey ;
Petrushina, Irina ;
Polyanskiy, Mikhail ;
Reis, David A. ;
Tochitsky, Sergei ;
Vasilyev, Sergey ;
Wang, Lifeng ;
Wu, Yi ;
Zhou, Fangjie .
ADVANCES IN OPTICS AND PHOTONICS, 2022, 14 (04) :652-782
[9]   The HITRAN2020 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hargreaves, R. J. ;
Hashemi, R. ;
Karlovets, E., V ;
Skinner, F. M. ;
Conway, E. K. ;
Hill, C. ;
Kochanov, R., V ;
Tan, Y. ;
Wcislo, P. ;
Finenko, A. A. ;
Nelson, K. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V ;
Campargue, A. ;
Chance, K., V ;
Coustenis, A. ;
Drouin, B. J. ;
Flaud, J-M ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Mlawer, E. J. ;
Nikitin, A., V ;
Perevalov, V., I ;
Rotger, M. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Adkins, E. M. ;
Baker, A. ;
Barbe, A. ;
Cane, E. ;
Csaszar, A. G. ;
Dudaryonok, A. ;
Egorov, O. ;
Fleisher, A. J. ;
Fleurbaey, H. ;
Foltynowicz, A. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J-M ;
Horneman, V-M ;
Huang, X. ;
Karman, T. ;
Karns, J. ;
Kassi, S. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 277
[10]   High-power SRS lasers - coherent summators (the way it was) [J].
Grasiuk, A. Z. ;
Zubarev, I. G. ;
Efimkov, V. F. ;
Smirnov, V. G. .
QUANTUM ELECTRONICS, 2012, 42 (12) :1064-1072