PV-Power Forecasting using Machine Learning Techniques

被引:0
|
作者
Al Arafat, Kazi Abdullah [1 ]
Creer, Kode [2 ]
Debnath, Anjan [3 ]
Olowu, Temitayo O. [4 ]
Parvez, Imtiaz [5 ]
机构
[1] Atish Dipankar Univ Sci & Technol, Dept Comp Sci & Eng, Dhaka, Bangladesh
[2] Utah Valley Univ, Dept Comp Sci, 800 W Univ Pkwy, Orem, UT 84058 USA
[3] Dept Elect Engn & Comp Sci, 1500 SW Jefferson Way, Corvallis, OR 97331 USA
[4] Idaho Natl Lab, 1955 N Fremont Ave, Idaho Falls, ID 83415 USA
[5] Utah Valley Univ, Dept Comp Sci, 800 W Univ Pkwy, Orem, UT 84058 USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY, EIT 2024 | 2024年
关键词
Solar; Forecasting; Gated Recurrent Unit; Recurrent Neural Network; Multi-Layer Perceptron; and Linear Regression;
D O I
10.1109/eIT60633.2024.10609848
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Solar energy forecasting plays a pivotal role in the efficient utilization of renewable energy resources for sustainable power generation. This study delves into the domain of solar-power forecasting, employing a comprehensive analysis of machine learning models. The primary objective is to evaluate and compare the performance of Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN), Multi-Layer Perceptron (MLP), and Linear Regression (LR) models in predicting solar energy production. Through a comprehensive evaluation of individual model performance, the study provides nuanced insights into the strengths and limitations of each forecasting approach. Results indicate that the Multy-Layer Perceptron (MLP) model excels in accuracy, exhibiting low root mean square error (RMSE) and high correlation among the parameters. The Gated Recurrent Unit (GRU) model demonstrates competitive performance, while the Recurrent Neural Network model showcases strengths in multiple metrics. Additionally, MLP and GRU models display superior predictive accuracy, emphasizing their efficacy in solar energy forecasting.
引用
收藏
页码:280 / 284
页数:5
相关论文
共 50 条
  • [1] PV-Power Forecasting using Machine Learning Techniques
    Al Arafat, Kazi Abdullah
    Creer, Kode
    Debnath, Anjan
    Olowu, Temitayo O.
    Parvez, Imtiaz
    2024 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY, EIT 2024, 2024, : 480 - 484
  • [2] Solar PV power forecasting at Yarmouk University using machine learning techniques
    Alhmoud, Lina
    Al-Zoubi, Ala' M.
    Aljarah, Ibrahim
    OPEN ENGINEERING, 2022, 12 (01): : 1078 - 1088
  • [3] Solar PV Power Forecasting Using Traditional Methods and Machine Learning Techniques
    Alam, Ahmed Manavi
    Nahid-Al-Masood
    Razee, Md Iqbal Asif
    Zunaed, Mohammad
    2021 IEEE KANSAS POWER AND ENERGY CONFERENCE (KPEC), 2021,
  • [4] Benchmarking physics-informed machine learning-based short term PV-power forecasting tools
    Pombo, Daniel Vazquez
    Bacher, Peder
    Ziras, Charalampos
    Bindner, Henrik W.
    Spataru, Sergiu, V
    Sorensen, Poul E.
    ENERGY REPORTS, 2022, 8 : 6512 - 6520
  • [5] Power system state forecasting using machine learning techniques
    Debottam Mukherjee
    Samrat Chakraborty
    Sandip Ghosh
    Electrical Engineering, 2022, 104 : 283 - 305
  • [6] Power system state forecasting using machine learning techniques
    Mukherjee, Debottam
    Chakraborty, Samrat
    Ghosh, Sandip
    ELECTRICAL ENGINEERING, 2022, 104 (01) : 283 - 305
  • [7] Short term wind power forecasting using machine learning techniques
    Chaudhary, Aditya
    Sharma, Akash
    Kumar, Ayush
    Dikshit, Karan
    Kumar, Neeraj
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2020, 23 (01): : 145 - 156
  • [8] Forecasting rooftop photovoltaic solar power using machine learning techniques
    Singh, Upma
    Singh, Shekhar
    Gupta, Saket
    Alotaibi, Majed A.
    Malik, Hasmat
    ENERGY REPORTS, 2025, 13 : 3616 - 3630
  • [9] Forecasting Solar Power Ramp Events Using Machine Learning Classification Techniques
    Abuella, Mohamed
    Chowdhury, Badrul
    2018 9TH IEEE INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS (PEDG), 2018,
  • [10] Machine Learning Based PV Power Generation Forecasting in Alice Springs
    Mahmud, Khizir
    Azam, Sami
    Karim, Asif
    Zobaed, S. M.
    Shanmugam, Bharanidharan
    Mathur, Deepika
    IEEE ACCESS, 2021, 9 : 46117 - 46128