Spectral deferred correction method for fractional initial value problem with Caputo-Hadamard derivative

被引:1
作者
Liu, Xiaoyuan [1 ,2 ]
Cai, Min [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Caputo-Hadamard derivative; Spectral deferred correction method; Fractional initial value problem; Mapped Jacobi log orthogonal functions;
D O I
10.1016/j.matcom.2024.07.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper considers an efficient and accurate spectral deferred correction (SDC) method for the initial value problem (IVP) with Caputo-Hadamard derivative. We first apply the basic idea of the SDC method to derive the numerical scheme. Then the iteration matrix which is the key to convergence of the proposed scheme can be obtained for the linear problem. Detailed computation of history term is presented using the spectral collocation method based on mapped Jacobi log orthogonal functions (MJLOFs). Finally, numerical simulations for both linear and nonlinear cases are shown to verify the feasibility and efficiency of the proposed method.
引用
收藏
页码:323 / 337
页数:15
相关论文
共 21 条
[11]   A novel, validated, and plant height-independent QTL for spike extension length is associated with yield-related traits in wheat [J].
Li, Cong ;
Tang, Huaping ;
Luo, Wei ;
Zhang, Xuemei ;
Mu, Yang ;
Deng, Mei ;
Liu, Yaxi ;
Jiang, Qiantao ;
Chen, Guoyue ;
Wang, Jirui ;
Qi, Pengfei ;
Pu, Zhien ;
Jiang, Yunfeng ;
Wei, Yuming ;
Zheng, Youliang ;
Lan, Xiujin ;
Ma, Jian .
THEORETICAL AND APPLIED GENETICS, 2020, 133 (12) :3381-3393
[12]   Arbitrarily high-order explicit energy-conserving methods for the generalized nonlinear fractional Schrödinger wave equations [J].
Liu, Yang ;
Ran, Maohua .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 216 :126-144
[13]   LINEAR DISSIPATION IN SOLIDS [J].
LOMNITZ, C .
JOURNAL OF APPLIED PHYSICS, 1957, 28 (02) :201-205
[14]   APPLICATION OF LOGARITHMIC CREEP LAW TO STRESS WAVE ATTENUATION IN SOLID EARTH [J].
LOMNITZ, C .
JOURNAL OF GEOPHYSICAL RESEARCH, 1962, 67 (01) :365-+
[15]   CREEP MEASUREMENTS IN IGNEOUS ROCKS [J].
LOMNITZ, C .
JOURNAL OF GEOLOGY, 1956, 64 (05) :473-479
[16]   Spectral Deferred Correction Methods for Fractional Differential Equations [J].
Lv, Chunwan ;
Azaiez, Mejdi ;
Xu, Chuanju .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (04) :729-751
[17]   A second-order scheme with nonuniform time grids for Caputo-Hadamard fractional sub-diffusion equations? [J].
Wang, Zhibo ;
Ou, Caixia ;
Vong, Seakweng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 414
[18]   Global variations in abyssal peridotite compositions [J].
Warren, Jessica M. .
LITHOS, 2016, 248 :193-219
[19]   Accurate numerical simulations for fractional diffusion equations using spectral deferred correction methods [J].
Yang, Zhengya ;
Chen, Xuejuan ;
Chen, Yanping ;
Wang, Jing .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 153 :123-129
[20]   An effective operator splitting method based on spectral deferred correction for the fractional Gray-Scott model [J].
Zhai, Shuying ;
Weng, Zhifeng ;
Zhuang, Qingqu ;
Liu, Fawang ;
Anh, Vo .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 425