Advanced electrocatalysts for fuel cells: Evolution of active sites and synergistic properties of catalysts and carrier materials

被引:12
作者
Kong, Zhijie [1 ,2 ]
Wu, Jingcheng [1 ]
Liu, Zhijuan [1 ]
Yan, Dafeng [3 ]
Wu, Zhi-Peng [4 ]
Zhong, Chuan-Jian [2 ]
机构
[1] Zhengzhou Univ, Henan Key Lab Crystalline Mol Funct Mat Green Cat, Coll Chem, Zhengzhou 450001, Peoples R China
[2] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA
[3] Hubei Univ, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Coll Chem & Chem Engn, Minist Educ,Key Lab Synth & Applicat Organ Funct, Wuhan 430062, Peoples R China
[4] King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr, Phys Sci & Engn Div, Thuwal, Saudi Arabia
来源
EXPLORATION | 2025年 / 5卷 / 01期
基金
中国博士后科学基金; 美国国家科学基金会; 中国国家自然科学基金;
关键词
active site; electrocatalyst; low/high-temperature fuel cell; oxygen reduction reaction; synergistic property; OXYGEN REDUCTION REACTION; METAL-FREE ELECTROCATALYSTS; CARBON NANOTUBE ARRAYS; FE/N/C ORR CATALYST; HIGH-PERFORMANCE; CORE-SHELL; PLATINUM SURFACES; DOPED GRAPHENE; ALLOY CATALYSTS; LATTICE-STRAIN;
D O I
10.1002/EXP.20230052
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Proton exchange-membrane fuel cell (PEMFC) is a clean and efficient type of energy storage device. However, the sluggish reaction rate of the cathode oxygen reduction reaction (ORR) has been a significant problem in its development. This review reports the recent progress of advanced electrocatalysts focusing on the interface/surface electronic structure and exploring the synergistic relationship of precious-based and non-precious metal-based catalysts and support materials. The support materials contain non-metal (C/N/Si, etc.) and metal-based structures, which have demonstrated a crucial role in the synergistic enhancement of electrocatalytic properties, especially for high-temperature fuel cell systems. To improve the strong interaction, some exciting synergistic strategies by doping and coating heterogeneous elements or connecting polymeric ligands containing carbon and nitrogen were also shown herein. Besides the typical role of the crystal surface, phase structure, lattice strain, etc., the evolution of structure-performance relations was also highlighted in real-time tests. The advanced in situ characterization techniques were also reviewed to emphasize the accurate structure-performance relations. Finally, the challenge and prospect for developing the ORR electrocatalysts were concluded for commercial applications in low- and high-temperature fuel cell systems.
引用
收藏
页数:22
相关论文
共 205 条
[1]   Defect engineering in photocatalytic materials [J].
Bai, Song ;
Zhang, Ning ;
Gao, Chao ;
Xiong, Yujie .
NANO ENERGY, 2018, 53 :296-336
[2]   Elucidating the activity of stepped Pt single crystals for oxygen reduction [J].
Bandarenka, Aliaksandr S. ;
Hansen, Heine A. ;
Rossmeisl, Jan ;
Stephens, Ifan E. L. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (27) :13625-13629
[3]   Critical advancements in achieving high power and stable nonprecious metal catalyst-based MEAs for real-world proton exchange membrane fuel cell applications [J].
Banham, Dustin ;
Kishimoto, Takeaki ;
Zhou, Yingjie ;
Sato, Tetsutaro ;
Bai, Kyoung ;
Ozaki, Jun-ichi ;
Imashiro, Yasuo ;
Ye, Siyu .
SCIENCE ADVANCES, 2018, 4 (03)
[4]   A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells [J].
Banham, Dustin ;
Ye, Siyu ;
Pei, Katie ;
Ozaki, Jun-ichi ;
Kishimoto, Takeaki ;
Imashiro, Yasuo .
JOURNAL OF POWER SOURCES, 2015, 285 :334-348
[5]   Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation [J].
Bao, Jian ;
Zhang, Xiaodong ;
Fan, Bo ;
Zhang, Jiajia ;
Zhou, Min ;
Yang, Wenlong ;
Hu, Xin ;
Wang, Hui ;
Pan, Bicai ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (25) :7399-7404
[6]   Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability [J].
Beermann, Vera ;
Gocyla, Martin ;
Willinger, Elena ;
Rudi, Stefan ;
Heggen, Marc ;
Dunin-Borkowski, Rafal E. ;
Willinger, Marc-Georg ;
Strasser, Peter .
NANO LETTERS, 2016, 16 (03) :1719-1725
[7]   Ligand effects in heterogeneous catalysis and electrochemistry [J].
Bligaard, T. ;
Norskov, J. K. .
ELECTROCHIMICA ACTA, 2007, 52 (18) :5512-5516
[8]   Oxygen electroreduction on Ag(111): The pH effect [J].
Blizanac, B. B. ;
Ross, P. N. ;
Markovic, N. M. .
ELECTROCHIMICA ACTA, 2007, 52 (06) :2264-2271
[9]   Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis [J].
Bu, Lingzheng ;
Zhang, Nan ;
Guo, Shaojun ;
Zhang, Xu ;
Li, Jing ;
Yao, Jianlin ;
Wu, Tao ;
Lu, Gang ;
Ma, Jing-Yuan ;
Su, Dong ;
Huang, Xiaoqing .
SCIENCE, 2016, 354 (6318) :1410-1414
[10]   Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis [J].
Bu, Lingzheng ;
Guo, Shaojun ;
Zhang, Xu ;
Shen, Xuan ;
Su, Dong ;
Lu, Gang ;
Zhu, Xing ;
Yao, Jianlin ;
Guo, Jun ;
Huang, Xiaoqing .
NATURE COMMUNICATIONS, 2016, 7