Identifying SARS-CoV-2 Variants Using Single-Molecule Conductance Measurements

被引:2
|
作者
Aminiranjbar, Zahra [1 ]
Gultakti, Caglanaz Akin [2 ,3 ]
Alangari, Mashari Nasser [1 ,4 ]
Wang, Yiren [5 ]
Demir, Busra [2 ,3 ]
Koker, Zeynep [2 ]
Das, Arindam K. [5 ,6 ]
Anantram, M. P. [5 ]
Oren, Ersin Emre [2 ,3 ]
Hihath, Joshua [1 ,7 ]
机构
[1] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
[2] TOBB Univ Econ & Technol, Dept Biomed Engn, Bionanodesign Lab, TR-06560 Ankara, Turkiye
[3] TOBB Univ Econ & Technol, Dept Mat Sci & Nanotechnol Engn, TR-06560 Ankara, Turkiye
[4] Univ Hail, Dept Elect Engn, Hail 2240, Saudi Arabia
[5] Univ Washington, Dept Elect Engn, Seattle, WA 98115 USA
[6] Eastern Washington Univ, Dept Comp Sci & Elect Engn, Cheney, WA 99004 USA
[7] Arizona State Univ, Ctr Bioelect & Biosensors, Sch Elect Comp & Energy Engn, Phoenix, AZ 85287 USA
来源
ACS SENSORS | 2024年 / 9卷 / 06期
基金
美国国家科学基金会;
关键词
biosensors; molecular electronics; SARS-CoV-2variant detection; single-molecule break junction; XGBoost machine learning; ELECTRICAL DETECTION; CHARGE-TRANSPORT; NUCLEIC-ACIDS;
D O I
10.1021/acssensors.3c02734
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The global COVID-19 pandemic has highlighted the need for rapid, reliable, and efficient detection of biological agents and the necessity of tracking changes in genetic material as new SARS-CoV-2 variants emerge. Here, we demonstrate that RNA-based, single-molecule conductance experiments can be used to identify specific variants of SARS-CoV-2. To this end, we (i) select target sequences of interest for specific variants, (ii) utilize single-molecule break junction measurements to obtain conductance histograms for each sequence and its potential mutations, and (iii) employ the XGBoost machine learning classifier to rapidly identify the presence of target molecules in solution with a limited number of conductance traces. This approach allows high-specificity and high-sensitivity detection of RNA target sequences less than 20 base pairs in length by utilizing a complementary DNA probe capable of binding to the specific target. We use this approach to directly detect SARS-CoV-2 variants of concerns B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron) and further demonstrate that the specific sequence conductance is sensitive to nucleotide mismatches, thus broadening the identification capabilities of the system. Thus, our experimental methodology detects specific SARS-CoV-2 variants, as well as recognizes the emergence of new variants as they arise.
引用
收藏
页码:2888 / 2896
页数:9
相关论文
共 50 条
  • [1] Single-molecule spectroscopy of the SARS-CoV-2 nucleocapsid protein
    Cubuk, Jasmine
    Incicco, J. Jeremias
    Stuchell-Brereton, Melissa D.
    Hall, Kathleen B.
    Soranno, Andrea
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 71A - 71A
  • [2] Single-molecule spectroscopy of the SARS-CoV-2 nucleocapsid protein
    Cubuk, Jasmine
    Incicco, Jeremias
    Alston, Jhullian J.
    Hall, Kathleen B.
    Stuchell-Brereton, Melissa D.
    Soranno, Andrea
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 200A - 200A
  • [3] Single-Molecule Investigation of the Binding Interface Stability of SARS-CoV-2 Variants with ACE2
    Ray, Ankita
    Minh Tran, Thu Thi
    Natividade, Rita dos Santos
    Moreira, Rodrigo A.
    Simpson, Joshua D.
    Mohammed, Danahe
    Koehler, Melanie
    Petitjean, Simon J.
    Zhang, Qingrong
    Bureau, Fabrice
    Gillet, Laurent
    Poma, Adolfo B.
    Alsteens, David
    ACS NANOSCIENCE AU, 2024, 4 (02): : 136 - 145
  • [4] Single-molecule force stability of the SARS-CoV-2–ACE2 interface in variants-of-concern
    Magnus S. Bauer
    Sophia Gruber
    Adina Hausch
    Marcelo C. R. Melo
    Priscila S. F. C. Gomes
    Thomas Nicolaus
    Lukas F. Milles
    Hermann E. Gaub
    Rafael C. Bernardi
    Jan Lipfert
    Nature Nanotechnology, 2024, 19 : 399 - 405
  • [5] Ultrasensitive detection of SARS-CoV-2 RNA and antigen using single-molecule optofluidic chip
    Meena, G. G.
    Stambaugh, A. M.
    Ganjalizadeh, V
    Stott, M. A.
    Hawkins, A. R.
    Schmidt, H.
    APL PHOTONICS, 2021, 6 (06)
  • [6] Purely electrical SARS-CoV-2 sensing based on single-molecule counting
    van Kooten, Xander F.
    Rozevsky, Yana
    Marom, Yulia
    Ben Sadeh, Efrat
    Meller, Amit
    NANOSCALE, 2022, 14 (13) : 4977 - 4986
  • [7] Interactions of SARS-CoV-2 and MERS-CoV fusion peptides measured using single-molecule force methods
    Qiu, Cindy
    Whittaker, Gary R.
    Gellman, Samuel H.
    Daniel, Susan
    Abbott, Nicholas L.
    BIOPHYSICAL JOURNAL, 2023, 122 (04) : 646 - 660
  • [8] Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective
    Seifert, Mona
    Bera, Subhas C.
    van Nies, Pauline
    Kirchdoerfer, Robert N.
    Shannon, Ashleigh
    Le, Thi-Tuyet-Nhung
    Meng, Xiangzhi
    Xia, Hongjie
    Wood, James M.
    Harris, Lawrence D.
    Papini, Flavia S.
    Arnold, Jamie J.
    Almo, Steven
    Grove, Tyler L.
    Shi, Pei-Yong
    Xiang, Yan
    Canard, Bruno
    Depken, Martin
    Cameron, Craig E.
    Dulin, David
    ELIFE, 2021, 10
  • [9] Identifying and Tracking SARS-CoV-2 Variants - A Challenge and an Opportunity
    Becker, Scott J.
    Taylor, Jill
    Sharfstein, Joshua M.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 385 (05): : 389 - 391
  • [10] A SARS-CoV-2 Neutralization Assay Using Single Molecule Arrays
    Gilboa, Tal
    Cohen, Limor
    Cheng, Chi-An
    Lazarovits, Roey
    Uwamanzu-Nna, Augusta
    Han, Isaac
    Griswold, Kettner, Jr.
    Barry, Nick
    Thompson, David B.
    Kohman, Richie E.
    Woolley, Ann E.
    Karlson, Elizabeth W.
    Walt, David R.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (49) : 25966 - 25972