Stereo matching on images based on volume fusion and disparity space attention

被引:3
作者
Liao, Lyuchao [1 ]
Zeng, Jiemao [1 ]
Lai, Taotao [2 ]
Xiao, Zhu [3 ]
Zou, Fumin [4 ]
Fujita, Hamido [5 ,6 ,7 ]
机构
[1] Fujian Univ Technol, Fuzhou 350118, Peoples R China
[2] Minjiang Univ, Fuzhou 350121, Peoples R China
[3] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[4] Fujian Univ Technol, Fujian Prov Key Lab Automot Elect & Elect Drive, Fuzhou 350118, Peoples R China
[5] Univ Teknol Malaysia, Malaysia Japan Int Inst Technol MJIIT, Kuala Lumpur 54100, Malaysia
[6] Univ Granada, Andalusian Res Inst Data Sci & Computat Intelligen, Granada, Spain
[7] Iwate Prefectural Univ, Reg Res Ctr, Takizawa 0200693, Japan
基金
中国国家自然科学基金;
关键词
Stereo matching; Volume fusion; Disparity space attention; Convolutional neural network; Autonomous driving; DEPTH;
D O I
10.1016/j.engappai.2024.108902
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Constructing cost volumes by leveraging the feature information from image pairs is crucial to improve the stereo matching accuracy, which plays a vital role in acquiring depth information in autonomous driving system. In this work, we propose a convolutional neural network-based method called volume fusion and disparity space attention-based stereo matching model. The model mainly comprises two components: the volume fusion module and the disparity space attention module. Specifically, the volume fusion module initially computes a correlation volume and a concatenation volume. it then generates the initial cost volume based on these computed volume and concatenation volume. Finally, the disparity space attention module regularizes the features of the initial cost volume in two dimensions (i.e., the disparity dimension and the space dimension) to obtain the attention cost volume for stereo matching. Experimental results demonstrate that the proposed model outperforms several state-of-the-art models on three popular and public datasets.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Attention Augmented Convolutional Networks [J].
Bello, Irwan ;
Zoph, Barret ;
Vaswani, Ashish ;
Shlens, Jonathon ;
Le, Quoc V. .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3285-3294
[2]   Pyramid Stereo Matching Network [J].
Chang, Jia-Ren ;
Chen, Yong-Sheng .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :5410-5418
[3]   Learning Depth with Convolutional Spatial Propagation Network [J].
Cheng, Xinjing ;
Wang, Peng ;
Yang, Ruigang .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (10) :2361-2379
[4]  
Cheng Xuelian, HIERARCHICAL NEURAL
[5]   Dense frustum-aware fusion for 3D object detection in perception systems [J].
Deng, Yuanzhi ;
Shen, Jianhao ;
Wen, Huajie ;
Chi, Cheng ;
Zhou, Yang ;
Xu, Gang .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
[6]  
Fang I., 2023, P IEEE CVF C COMP VI, P4471
[7]   3Global Second-order Pooling Convolutional Networks [J].
Gao, Zilin ;
Xie, Jiangtao ;
Wang, Qilong ;
Li, Peihua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3019-3028
[8]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[9]  
Ghosh D.K., 2023, Expert Syst. Appl.
[10]   Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching [J].
Gu, Xiaodong ;
Fan, Zhiwen ;
Zhu, Siyu ;
Dai, Zuozhuo ;
Tan, Feitong ;
Tan, Ping .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :2492-2501