Lower bounds for the first eigenvalue of Laplacian on graphs

被引:2
作者
Meng, LianChen [1 ]
Lin, Yong [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
The Dirichlet Laplace operator for graphs; Ricci curvature for graphs; Eigenvalues; Diameter; RICCI CURVATURE;
D O I
10.1016/j.jmaa.2024.128369
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a lower bound for the first eigenvalue of the Dirichlet Laplacian on locally finite graphs, which extending a previous result. We also provide an improved lower bound for the first eigenvalue for finite graphs with non-negative Ricci curvature. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:8
相关论文
共 6 条
[1]  
Bakry Dominique., 2006, Seminaire de_Probabilites_XIX_1983/84:_Proceedings, P177
[2]   CURVATURE ASPECTS OF GRAPHS [J].
Bauer, F. ;
Chung, F. ;
Lin, Y. ;
Liu, Y. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) :2033-2042
[3]   Harnack inequalities for graphs with non-negative Ricci curvature [J].
Chung, Fan ;
Lin, Yong ;
Yau, S. -T. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) :25-32
[4]   RICCI CURVATURE OF GRAPHS [J].
Lin, Yong ;
Lu, Linyuan ;
Yau, Shing-Tung .
TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) :605-627
[5]  
Lin Y, 2010, MATH RES LETT, V17, P343, DOI 10.4310/MRL.2010.v17.n2.a13
[6]   Ricci curvature of metric spaces [J].
Ollivier, Yann .
COMPTES RENDUS MATHEMATIQUE, 2007, 345 (11) :643-646