On the controllability of a system coupling Kuramoto-Sivashinsky-Korteweg-de Vries and transport equations

被引:0
作者
Kumar, Manish [1 ]
Majumdar, Subrata [2 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Dept Math & Stat, Campus Rd, Mohanpur 741246, West Bengal, India
[2] Indian Inst Technol, Dept Math, Mumbai 400076, India
关键词
Parabolic-hyperbolic coupled system; Kuramoto-Sivashinsky-Korteweg-de Vries equation; Transport equation; Moment method; Biorthogonal family; Null controllability; NULL-CONTROLLABILITY; PARABOLIC EQUATIONS; BOUNDARY CONTROL; STABILIZATION; WAVES; PROPAGATION; STABILITY; SPACE; TIME; COST;
D O I
10.1007/s00498-024-00390-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the null controllability of a coupled parabolic-hyperbolic system in one dimension with a single control using the moment method. More precisely, we consider a system coupling Kuramoto-Sivashinsky-Korteweg-de Vries equation and transport equation through first-order derivatives. We explore the null controllability of four different control systems with the control acting either on the periodic boundary or in some open subset of the interior of the domain with periodic boundary conditions. Depending on the position of the control, we get some regular periodic Sobolev space as the space of initial data for which the null controllability holds, provided the time is sufficiently large.
引用
收藏
页码:875 / 926
页数:52
相关论文
共 55 条
[1]  
[Anonymous], 2004, J. Differ. Equ, DOI DOI 10.1016/J.JDE.2004.02.004
[2]   Feedback control of the Kuramoto-Sivashinsky equation [J].
Armaou, A ;
Christofides, PD .
PHYSICA D, 2000, 137 (1-2) :49-61
[3]   NULL-CONTROLLABILITY OF LINEAR PARABOLIC-TRANSPORT SYSTEMS [J].
Beauchard, Karine ;
Koenig, Armand ;
Le Balc'h, Kevin .
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2020, 7 :743-802
[4]  
Bell ET., 1939, B AM MATH SOC, V45, P507, DOI [10.1090/S0002-9904-1939-07025-0, DOI 10.1090/S0002-9904-1939-07025-0]
[5]   SHARP ESTIMATES OF THE ONE-DIMENSIONAL BOUNDARY CONTROL COST FOR PARABOLIC SYSTEMS AND APPLICATION TO THE N-DIMENSIONAL BOUNDARY NULL CONTROLLABILITY IN CYLINDRICAL DOMAINS [J].
Benabdallah, Assia ;
Boyer, Franck ;
Gonzalez-Burgos, Manuel ;
Olive, Guillaume .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (05) :2970-3001
[6]   LONG WAVES ON LIQUID FILMS [J].
BENNEY, DJ .
JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (02) :150-&
[7]   ON FOURIER TRANSFORMS OF MEASURES WITH COMPACT SUPPORT [J].
BEURLING, A ;
MALLIAVIN, P .
ACTA MATHEMATICA, 1962, 107 (3-4) :291-309
[8]  
Cannarsa P., 2019, Springer INdAM Ser., V32, P69, DOI 10.1007/978-3-030-17949-6_4
[9]   Boundary controllability of a cascade system coupling fourth- and second-order parabolic equations [J].
Carreno, Nicolas ;
Cerpa, Eduardo ;
Mercado, Alberto .
SYSTEMS & CONTROL LETTERS, 2019, 133
[10]   On the cost of null controllability of a fourth-order parabolic equation [J].
Carreno, Nicolas ;
Guzman, Patricio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (11) :6485-6520