Learning for Safety-Critical Control with Control Barrier Functions

被引:0
作者
Taylor, Andrew J. [1 ]
Singletary, Andrew [1 ]
Yue, Yisong [1 ]
Ames, Aaron D. [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
来源
LEARNING FOR DYNAMICS AND CONTROL, VOL 120 | 2020年 / 120卷
关键词
feedback control; barrier functions; supervised learning; safety; robotics;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modern nonlinear control theory seeks to endow systems with properties of stability and safety, and have been deployed successfully in multiple domains. Despite this success, model uncertainty remains a significant challenge in synthesizing safe controllers, leading to degradation in the properties provided by the controllers. This paper develops a machine learning framework utilizing Control Barrier Functions (CBFs) to reduce model uncertainty as it impact the safe behavior of a system. This approach iteratively collects data and updates a controller, ultimately achieving safe behavior. We validate this method in simulation and experimentally on a Segway platform.
引用
收藏
页码:708 / 717
页数:10
相关论文
共 29 条
[1]  
Ames AD, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P3420, DOI [10.23919/ECC.2019.8796030, 10.23919/ecc.2019.8796030]
[2]   Control Barrier Function Based Quadratic Programs for Safety Critical Systems [J].
Ames, Aaron D. ;
Xu, Xiangru ;
Grizzle, Jessy W. ;
Tabuada, Paulo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) :3861-3876
[3]  
Ames AD, 2014, IEEE DECIS CONTR P, P6271, DOI 10.1109/CDC.2014.7040372
[4]  
Berkenkamp F, 2016, IEEE INT CONF ROBOT, P491, DOI 10.1109/ICRA.2016.7487170
[5]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[6]  
Cheng R, 2019, AAAI CONF ARTIF INTE, P3387
[7]  
Ernst D, 2005, J MACH LEARN RES, V6, P503
[8]   A General Safety Framework for Learning-Based Control in Uncertain Robotic Systems [J].
Fisac, Jaime F. ;
Akametalu, Anayo K. ;
Zeilinger, Melanie N. ;
Kaynama, Shahab ;
Gillula, Jeremy ;
Tomlin, Claire J. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (07) :2737-2752
[9]   Towards a Framework for Realizable Safety Critical Control through Active Set Invariance [J].
Gurriet, Thomas ;
Singletary, Andrew ;
Reher, Jacob ;
Ciarletta, Laurent ;
Feron, Eric ;
Ames, Aaron .
2018 9TH ACM/IEEE INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS (ICCPS 2018), 2018, :98-106
[10]  
Gyorfi L., 2006, A distribution-free theory of nonparametric regression