Pore-Scale Simulation of Interphase Multicomponent Mass Transfer Using a Non-Newtonian Model

被引:0
作者
dos Santos, Alinia Rodrigues [2 ]
Brito, Matheus da Cunha [2 ]
de Araujo, Manoel Silvino Batalha [1 ,2 ]
机构
[1] Fed Univ Para, Inst Exact & Nat Sci, Rua Augusto Correa 01, BR-66075110 Belem, PA, Brazil
[2] Fed Univ Para, Inst Technol, Rua Augusto Correa 01, BR-66075110 Belem, PA, Brazil
关键词
Non-Newtonian fluid; Mass transfer; Numerical simulation; Pore scale; SPECIES TRANSFER; FLUID; VOLUME;
D O I
10.1007/s11242-024-02115-7
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study investigates multiphase flow with non-Newtonian fluid at pore scale, using the Compressive Continuum Species Transfer (C-CST) method in a microchannel and 2D porous media, with emphasis on drainage and mass transfer between fluids through the Volume of Fluid (VOF) method. The object of study is the multiphase flow in oil reservoirs, where immiscible fluids coexist in the porous media. The use of recovery methods becomes relevant in scenarios of low reservoir energy or when the physical properties of the oil compromise the flow. The influence of petroleum rheology, especially heavy crude oil with non-Newtonian viscoelastic behaviour, is considered. Recovery methods, such as the injection of CO2, aim to optimize the flow by modifying the rheological properties of the fluid. This article aims to conduct a numerical analysis using the C-CST method with Direct Numerical Simulation (DNS) and volume tracking techniques to capture an interface between fluids. The main objective is to numerically implement a non-Newtonian rheological model in the linear momentum conservation equation, comparing the flow between non-Newtonian and Newtonian fluids at pore scale, and analysing the mass transfer at the flow interface with this new approach. Numerical study of drainage and mass transfer using the Giesekus model as a constitutive equation.Simulations made in a microchannel and a 2D complex porous medium using the finite volume method.Thin film and mass transfer coefficients change with the Deborah number.
引用
收藏
页码:2327 / 2356
页数:30
相关论文
共 32 条
  • [1] A stable numerical implementation of integral viscoelastic models in the OpenFOAM® computational library
    Araujo, M. S. B.
    Fernandes, C.
    Ferras, L. L.
    Tukovic, Z.
    Jasak, H.
    Nobrega, J. M.
    [J]. COMPUTERS & FLUIDS, 2018, 172 : 728 - 740
  • [2] Quick deposition of a fluid on the wall of a tube
    Aussillous, P
    Quéré, D
    [J]. PHYSICS OF FLUIDS, 2000, 12 (10) : 2367 - 2371
  • [3] Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution
    Berberovic, Edin
    van Hinsberg, Nils P.
    Jakirlic, Suad
    Roisman, Ilia V.
    Tropea, Cameron
    [J]. PHYSICAL REVIEW E, 2009, 79 (03):
  • [4] Bird R.B., 2007, TRANSPORT PHENOMENA, Vsecond
  • [5] A CONTINUUM METHOD FOR MODELING SURFACE-TENSION
    BRACKBILL, JU
    KOTHE, DB
    ZEMACH, C
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) : 335 - 354
  • [6] Bretas R. E. S., 2005, REOLOGIA POLMEROS FU
  • [7] Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions
    Chang, Chun
    Zhou, Quanlin
    Oostrom, Mart
    Kneafsey, Timothy J.
    Mehta, Hardeep
    [J]. ADVANCES IN WATER RESOURCES, 2017, 100 : 14 - 25
  • [8] Multiphase mass transport with partitioning and inter-phase transport in porous media
    Coutelieris, F. A.
    Kainourgiakis, M. E.
    Stubos, A. K.
    Kikkinides, E. S.
    Yortsos, Y. C.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2006, 61 (14) : 4650 - 4661
  • [9] A unified single-field model framework for Volume-Of-Fluid simulations of interfacial species transfer applied to bubbly flows
    Deising, Daniel
    Marschall, Holger
    Bothe, Dieter
    [J]. CHEMICAL ENGINEERING SCIENCE, 2016, 139 : 173 - 195
  • [10] Viscoelastic fluid analysis in internal and in free surface flows using the software OpenFOAM
    Favero, J. L.
    Secchi, A. R.
    Cardozo, N. S. M.
    Jasak, H.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2010, 34 (12) : 1984 - 1993