Filtered spectrum modeling of high-performance perovskite tandem solar cells: Tailoring absorber properties and electron/hole transport layers for 31.55 % efficiency

被引:10
作者
Singh, Yashwant Kumar [1 ]
Dwivedi, D. K. [1 ]
Lohia, Pooja [2 ]
Pandey, Rahul [3 ]
Madan, Jaya [3 ]
Hossain, M. Khalid [4 ]
Agarwal, Surbhi [1 ]
Rai, Shambhavi [5 ]
Al-Almar, Essam A. [6 ]
机构
[1] Madan Mohan Malviya Univ Technol, Dept Phys & Mat Sci, Gorakhpur 273010, India
[2] Madan Mohan Malaviya Univ Technol, Dept Elect & Commun Engn, Gorakhpur 273010, India
[3] Chitkara Univ, Chitkara Univ Inst Engn & Technol, VLSI Ctr Excellence, Rajpura, Punjab, India
[4] Bangladesh Atom Energy Commiss, Atom Energy Res Estab, Inst Elect, Dhaka 1349, Bangladesh
[5] Indian Inst Technol, Dept Sustainable Energy Engn, Kanpur 208016, India
[6] King Saud Univ, Coll Engn, Dept Elect Engn, POB 800, Riyadh 11421, Saudi Arabia
关键词
Solar cell; Perovskite; Tandem; Electron transport medium; Hole transport medium; HALIDE PEROVSKITES; HETEROJUNCTION; SIMULATION;
D O I
10.1016/j.jpcs.2024.112096
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, the perovskite tandem solar cell (TP SC ) has been accomplished using SCAPS-1D. The present study focuses on comprehensive exploration and detailed optimization using various strategies constructing a tandem device. To calculate high photovoltaic power conversion efficiency (PCE), the numerical analysis has been carried out for a wide-bandgap halide (W BH ) FA 0.75 Cs 0 & sdot;25 Pb(I 0 & sdot;8 Br 0.2 ) 3 of bandgap 1.67eV and a Pb -Sn based narrow-bandgap halide (N BH ) FA 0.7 MA 0.3 Pb 0 & sdot;5 Sn 0 & sdot;5 I 3 of bandgap 1.22eV as absorber layer in top -cell (T CELL ) and bottom -cell (B CELL ) respectively. The W BH has huge potential as a front light absorber and the N BH based B CELL provides stability and high performance by accepting high and low energy photons respectively. This method mitigates thermalization and non-absorbed photon loss which results in the growth in PCE. The proposed work demonstrates the impact of active-layer thickness along with defect density on the solar -cell parameters. It has been observed that defect density is low for the optimal performance. An investigation for various electron transport medium (ETMs) and hole transport medium (HTMs) has been done to secure an optimum performing T CELL as well as B CELL . Using filtered-spectrum study along with current-matching method, every PV metric parameter has been analyzed after their deployment into tandem configuration. The numerical investigation has shown promising photovoltaic parameters with aa high open circuit voltage (V OC ) of 2.33 V, a short circuit current density (J SC ) of 17.07 mA/cm 2 , a fill factor (FF) of 79.34 % and PCE of 31.55 % in tandem configuration.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Numerical investigation of solar cells based on hybrid organic cation perovskite with inorganic HTL via SCAPS-1D [J].
ABENA, A. M. N. T. O. U. G. A. ;
NGOUPO, A. T. E. Y. O. U. ;
ABEGA, F. X. A. B. O. M. O. ;
NDJAKA, J. M. B. .
CHINESE JOURNAL OF PHYSICS, 2022, 76 :94-109
[2]   Sn-Based Perovskite Solar Cells towards High Stability and Performance [J].
Ayaydah, Wafa ;
Raddad, Eman ;
Hawash, Zafer .
MICROMACHINES, 2023, 14 (04)
[3]   Maximizing the performance of single and multijunction MA and lead-free perovskite solar cell [J].
Azadinia, M. ;
Ameri, M. ;
Ghahrizjani, R. T. ;
Fathollahi, M. .
MATERIALS TODAY ENERGY, 2021, 20 (20)
[4]   High-Efficiency Monolithic Photosupercapacitors: Smart Integration of a Perovskite Solar Cell with a Mesoporous Carbon Double-Layer Capacitor [J].
Berestok, Taisiia ;
Diestel, Christian ;
Ortlieb, Niklas ;
Buettner, Jan ;
Matthews, Joel ;
Schulze, Patricia S. C. ;
Goldschmidt, Jan Christoph ;
Glunz, Stefan W. ;
Fischer, Anna .
SOLAR RRL, 2021, 5 (11)
[5]   Modelling polycrystalline semiconductor solar cells [J].
Burgelman, M ;
Nollet, P ;
Degrave, S .
THIN SOLID FILMS, 2000, 361 :527-532
[6]   Impact on generation and recombination rate in Cu2ZnSnS4 (CZTS) solar cell for Ag2S and In2Se3 buffer layers with CuSbS2 back surface field layer [J].
Chauhan, Pratibha ;
Agarwal, Surbhi ;
Srivastava, Vaibhava ;
Maurya, Sadanand ;
Hossain, M. Khalid ;
Madan, Jaya ;
Yadav, Rajesh Kumar ;
Lohia, Pooja ;
Dwivedi, Dilip Kumar ;
Alothman, Asma A. .
PROGRESS IN PHOTOVOLTAICS, 2024, 32 (03) :156-171
[7]   Insights into the Development of Monolithic Perovskite/Silicon Tandem Solar Cells [J].
Chen, Bingbing ;
Ren, Ningyu ;
Li, Yucheng ;
Yan, Lingling ;
Mazumdar, Sayantan ;
Zhao, Ying ;
Zhang, Xiaodan .
ADVANCED ENERGY MATERIALS, 2022, 12 (04)
[8]   Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications [J].
Cheng, Yuanhang ;
Ding, Liming .
SUSMAT, 2021, 1 (03) :324-344
[9]   High-performance large-area perovskite photovoltaic modules [J].
Chu, Liang ;
Zhai, Shuaibo ;
Ahmad, Waqar ;
Zhang, Jing ;
Zang, Yue ;
Yan, Wensheng ;
Li, Yongfang .
NANO RESEARCH ENERGY, 2022, 1 (02)
[10]   Metal Halide Perovskite for next-generation optoelectronics: progresses and prospects [J].
Dong, He ;
Ran, Chenxin ;
Gao, Weiyin ;
Li, Mingjie ;
Xia, Yingdong ;
Huang, Wei .
ELIGHT, 2023, 3 (01)