Bayesian parameter estimation using truncated normal distributions as priors for parameters in fundamental models of chemical processes

被引:2
作者
Gibson, Lauren A. [1 ]
McAuley, Kimberley B. [1 ]
机构
[1] Queens Univ, Dept Chem Engn, Kingston, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bayesian statistics; confidence regions; fundamental models; inverse model; parameter estimation; parametric bootstrapping; statistical analysis; truncated normal distribution; uncertainty quantification; UNCERTAINTY QUANTIFICATION; KINETIC-MODELS; CO2; ADSORPTION; INFERENCE; DESIGN;
D O I
10.1002/cjce.25398
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Modellers of chemical processes with knowledge about plausible parameter values use Bayesian parameter estimation methods to account for their prior beliefs. Some modellers specify prior distributions with finite parameter ranges, such as uniform distributions and truncated normal distributions, because they better account for knowledge about realistic parameter ranges than normal prior distributions with parameter values ranging between -infinity$$ -\infty $$ and +infinity$$ +\infty $$. We derive closed-form objective functions for Bayesian parameter estimation with truncated normal priors and uniform priors, for the first time, so that parameter estimation can be performed by solving simple optimization problems rather than using complex sampling-based techniques. A parametric bootstrapping method that considers truncated normal priors and model nonlinearity is proposed to determine 95% confidence intervals and joint confidence regions. A pharmaceutical case study is used to show the effectiveness of the proposed objective functions and bootstrapping methodology. Confidence regions from bootstrapping are similar to linearization-based confidence regions that do not account for truncation when truncated areas in normal prior distributions are relatively small. More truncation, which corresponds to more-precise prior knowledge about the parameters, results in smaller joint confidence regions. The proposed methods will be attractive for parameter estimation in complex process models because they can be less computationally intensive than Markov chain Monte Carlo methods that provide similar results.
引用
收藏
页码:649 / 665
页数:17
相关论文
共 66 条
  • [1] Propagating input uncertainties into parameter uncertainties and model prediction uncertainties-A review
    Abdi, Kaveh
    Celse, Benoit
    McAuley, Kim
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 102 (01) : 254 - 273
  • [2] Estimation of output measurement variances for error-in-variables model parameter estimation
    Abdi, Kaveh
    McAuley, Kimberley B.
    [J]. AICHE JOURNAL, 2022, 68 (08)
  • [3] Estimating reaction model parameter uncertainty with Markov Chain Monte Carlo
    Albrecht, Jacob
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2013, 48 : 14 - 28
  • [4] Statistical tools for optimal dynamic model building
    Asprey, SP
    Macchietto, S
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) : 1261 - 1267
  • [5] Bardsley J. M., 1895, SIAM J SCI COMPUT, V2014, P36
  • [6] Bates D.M. Watts., 1988, Nonlinear regression analysis and its applications, DOI 10.1002/9780470316757
  • [7] Beck J.V., 1977, Parameter Estimation in Engineering and Science
  • [8] Biglari M, 2006, CAN J CHEM ENG, V84, P116
  • [9] High fidelity mathematical model building with experimental data: A Bayesian approach
    Blau, Gary
    Lasinski, Michael
    Orcun, Seza
    Hsu, Shuo-Huan
    Caruthers, Jim
    Delgass, Nicholas
    Venkatasubramanian, Venkat
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (4-5) : 971 - 989
  • [10] Dynamic modeling of bacteria in a pilot drinking-water distribution system
    Bois, FY
    Fahmy, T
    Block, JC
    Gatel, D
    [J]. WATER RESEARCH, 1997, 31 (12) : 3146 - 3156