Insights into electrochemical paradigms for lithium extraction: Electrodialysis versus capacitive deionization

被引:22
作者
Jiang, Dong [1 ,2 ,3 ]
Xu, Ruibo [1 ]
Bai, Liang [1 ]
Wu, Wenjie [1 ]
Luo, Dan [1 ]
Li, Zhengtong [4 ]
Asahi, Toru [3 ]
Mai, Yiyong [5 ]
Liu, Zhong [6 ]
Yamauchi, Yusuke [2 ,7 ,8 ]
Xu, Xingtao [1 ,2 ]
机构
[1] Zhejiang Ocean Univ, Marine Sci & Technol Coll, Zhoushan 316022, Peoples R China
[2] Nagoya Univ, Grad Sch Engn, Dept Mat Proc Engn, Nagoya 4648601, Japan
[3] Waseda Univ, Fac Sci & Engn, Dept Nanosci & Nanoengn, Shinjuku, Tokyo 1698555, Japan
[4] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul Eng, Nanjing 211100, Peoples R China
[5] Shanghai Jiao Tong Univ, Chinese Acad Sci, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn,Key Lab Green & High End Util, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[6] Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sal, Qinghai Prov Key Lab Resources & Chem Salt Lakes, Xining 810008, Peoples R China
[7] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, Brisbane, Qld 4072, Australia
[8] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 03722, South Korea
基金
中国国家自然科学基金;
关键词
Electrochemical lithium extraction; Electrodialysis; Capacitive deionization; Ion selectivity; Electrochemical separation methods; SALT-LAKE BRINES; RECOVERING LITHIUM; ION BATTERY; SEAWATER; MEMBRANE; DESALINATION; WATER; OPTIMIZATION; PERFORMANCE; TECHNOLOGY;
D O I
10.1016/j.ccr.2024.215923
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Efficient lithium extraction and separation technologies are increasingly imperative owing to the rising demand for lithium in energy storage and electronics. However, the elevated energetic and monetary costs relative to conventional thermal and pressure separation methods, such as reverse osmosis and distillation, significantly diminish the attractiveness of this endeavor. Recently, electrochemical methods are extending into the Li+ separation and extraction technologies, including electrodialysis and capacitive deionization. This work systematically reviews recent advancements in these electrochemical extraction methods for lithium concentration. First, it systematically assesses the key evaluation parameters including extraction capacity, selectivity factor, and specific energy consumption. Moreover, advanced characterization methods crucial for comprehending the intricacies of these electrochemical technologies are outlined. Specifically, this study elucidates the extraction principles of these electrochemical methods, consolidates the current state of advancement in these extraction techniques, and juxtaposes the performance parameters of these methods. Finally, it anticipates current challenges and delineates future research directions for lithium extraction via electrodialysis and capacitive deionization techniques, thereby furnishing guidelines for lithium extraction endeavors.
引用
收藏
页数:21
相关论文
共 200 条
[1]   Understanding Battery Interfaces by Combined Characterization and Simulation Approaches: Challenges and Perspectives [J].
Atkins, Duncan ;
Ayerbe, Elixabete ;
Benayad, Anass ;
Capone, Federico G. ;
Capria, Ennio ;
Castelli, Ivano E. ;
Cekic-Laskovic, Isidora ;
Ciria, Raul ;
Dudy, Lenart ;
Edstrom, Kristina ;
Johnson, Mark R. ;
Li, Hongjiao ;
Lastra, Juan Maria Garcia ;
De Souza, Matheus Leal ;
Meunier, Valentin ;
Morcrette, Mathieu ;
Reichert, Harald ;
Simon, Patrice ;
Rueff, Jean-Pascal ;
Sottmann, Jonas ;
Wenzel, Wolfgang ;
Grimaud, Alexis .
ADVANCED ENERGY MATERIALS, 2022, 12 (17)
[2]   Four-step constant voltage operation of hybrid capacitive deionization with composite electrodes for bifunctional deionization and lithium recovery [J].
Bae, Sungho ;
Jeon, Sung-il ;
Lee, Woonghee ;
Kim, Yerin ;
Cho, Kangwoo .
DESALINATION, 2023, 565
[3]   Preparation of lithium ion-selective cation exchange membrane for lithium recovery from sodium contaminated lithium bromide solution by electrodialysis process [J].
Bajestani, Majid Bazrgar ;
Moheb, Ahmad ;
Dinari, Mohammad .
DESALINATION, 2020, 486
[4]   Application of Capacitive Deionization in Water Treatment and Energy Recovery: A Review [J].
Bao, Shenxu ;
Xin, Chunfu ;
Zhang, Yimin ;
Chen, Bo ;
Ding, Wei ;
Luo, Yongpeng .
ENERGIES, 2023, 16 (03)
[5]   MiMiC: Multiscale Modeling in Computational Chemistry [J].
Bolnykh, Viacheslav ;
Olsen, Jogvan Magnus Haugaard ;
Meloni, Simone ;
Bircher, Martin P. ;
Ippoliti, Emiliano ;
Carloni, Paolo ;
Rothlisberger, Ursula .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2020, 7
[6]   Evaluating the effects of temperature on flow-by capacitive deionization [J].
Bouzari, Sajjad ;
Bidi, Mokhtar ;
Mojaddam, Mohammad ;
Kazemi, Sayed Habib .
ENERGY REPORTS, 2022, 8 :15524-15530
[7]   Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications [J].
Bredar, Alexandria R. C. ;
Chown, Amanda L. ;
Burton, Andricus R. ;
Farnum, Byron H. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) :66-98
[8]   Application of bipolar membrane electrodialysis (BMED) for simultaneous separation and recovery of boron and lithium from aqueous solutions [J].
Bunani, Samuel ;
Yoshizuka, Kazuharu ;
Nishihama, Syouhei ;
Arda, Muserref ;
Kabay, Nalan .
DESALINATION, 2017, 424 :37-44
[9]   Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling [J].
Calvo, Ernesto Julio .
CURRENT OPINION IN ELECTROCHEMISTRY, 2019, 15 :102-108
[10]   Recovering water from lithium-rich brines by a fractionation process based on membrane distillation-crystallization [J].
Cerda, Amanda ;
Quilaqueo, Michelle ;
Barros, Lorena ;
Seriche, Gabriel ;
Gim-Krumm, Minghai ;
Santoro, Sergio ;
Avci, Ahmet H. ;
Romero, Julio ;
Curcio, Efrem ;
Estay, Humberto .
JOURNAL OF WATER PROCESS ENGINEERING, 2021, 41