Entropies of Serre functors for higher hereditary algebras

被引:0
作者
Han, Yang [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Higher hereditary algebra; Upper (lower) Serre dimension; Entropy; Polynomial entropy; Hochschild (co)homology entropy; REPRESENTATION-FINITE ALGEBRAS; CATEGORIES; DIMENSION;
D O I
10.1016/j.jalgebra.2024.03.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a higher hereditary algebra, we calculate its upper (lower) Serre dimension, the entropy and polynomial entropy of Serre functor, and the Hochschild (co)homology entropy of Serre quasi-functor. These invariants are determined by its CalabiYau dimension for a higher representation -finite algebra, and by its global dimension and the spectral radius and polynomial growth rate of its Coxeter matrix for a higher representationinfinite algebra. For this, we will prove the Yomdin type inequality on Hochschild homology entropy for a finite dimensional elementary algebra of finite global dimension. Our calculations imply that the Kikuta and Ouchi's question on relations between entropy and Hochschild (co)homology entropy has positive answer, and the Gromov-Yomdin type equalities on entropy and Hochschild (co)homology entropy hold, for the Serre functor on perfect derived category and the Serre quasi-functor on perfect dg module category of an indecomposable elementary higher hereditary algebra. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 298
页数:24
相关论文
共 27 条
[1]  
Assem I., 2006, Elements of the Representation Theory of Associative Algebras Volume 1 Techniques of Representation Theory, V65
[2]  
Auslander Maurice., 1995, CAMBRIDGE STUDIES AD, V36
[3]  
Belitskii G. R., 1988, Operator Theory: Advances and Applications, V36
[4]   Lectures on DG-Categories [J].
Bertrand, Toen .
TOPICS IN ALGEBRAIC AND TOPOLOGICAL K-THEORY, 2011, 2008 :243-302
[5]   ENHANCED TRIANGULATED CATEGORIES [J].
BONDAL, AI ;
KAPRANOV, MM .
MATHEMATICS OF THE USSR-SBORNIK, 1991, 70 (01) :93-107
[6]   A tour about existence and uniqueness of dg enhancements and lifts [J].
Canonaco, Alberto ;
Stellari, Paolo .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 122 :28-52
[7]  
Chan AR, 2024, Arxiv, DOI arXiv:2012.11927
[8]  
Dimitrov George., 2014, The influence of Solomon Lefschetz in geometry and topology, V50, P133, DOI [10.1090/conm/621/12421, DOI 10.1090/CONM/621/12421]
[9]  
EILENBERG S, 1954, COMMENT MATH HELV, V28, P310
[10]  
EILENBERG S, 1957, NAGOYA MATH J, V12