An Approach to Enhance PEC Water Splitting Performance through Al:Ti Codoping in Hematite (α-Fe2O3) Photoanode: The Effect of Al3+as a Codopant

被引:5
作者
Chaule, Sourav [1 ]
Kang, Jihun [1 ]
Ghule, Balaji G. [1 ]
Kim, Hyunmin [1 ]
Jang, Ji-Hyun [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Sch Carbon Neutral, Grad Sch Semicond Mat & Devices Engn, Ulsan 44919, South Korea
来源
ACS MATERIALS LETTERS | 2024年 / 6卷 / 07期
基金
新加坡国家研究基金会;
关键词
ELECTRON-TRANSPORT; MECHANISM; OXIDATION; TI;
D O I
10.1021/acsmaterialslett.4c00700
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We achieved improved photoelectrochemical (PEC) efficiency by inducing strain through substitutional Al3+ doping in hematite, followed by codoping with Ti4+. The substitution of Al3+ for Fe3+ induces local strain within the lattice, reducing interionic distances and thereby enhancing the charge carrier transport properties. However, theoretical findings revealed initially unfavorable formation energy when Al3+ is doped into hematite, leading to significant lattice distortion due to size mismatch and thus limiting PEC activity. Co-doping Al3+ with Ti4+ in Fe2O3 restored the lattice symmetry by alleviating strain, resulting in a favorable formation energy. Additionally, Ti4+ contributes excess electrons, further increasing the electrical conductivity. By leveraging formation energy control through Ti doping, our optimized Al:Ti-Fe2O3 with a cocatalyst exhibited a photocurrent density of 4.00 mA cm(-2) at 1.23 V-RHE, representing a 6.5-fold improvement over Fe2O3 alone. Our study proposes an approach for utilizing Al3+ as a codopant in Fe2O3, which can potentially be extended to other codoped systems.
引用
收藏
页码:2897 / 2904
页数:8
相关论文
共 44 条
[21]  
MORIN FJ, 1951, PHYS REV, V83, P1005, DOI 10.1103/PhysRev.83.1005
[22]   A STUDY OF THE CRYSTAL-STRUCTURE OF FE2O3 IN THE PRESSURE RANGE UP TO 65 GPA USING SYNCHROTRON RADIATION [J].
OLSEN, JS ;
COUSINS, CSG ;
GERWARD, L ;
JHANS, H ;
SHELDON, BJ .
PHYSICA SCRIPTA, 1991, 43 (03) :327-330
[23]   Electron hopping mechanism in hematite (α-Fe2O3) [J].
Papaioannou, JC ;
Patermarakis, GS ;
Karayianni, HS .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (05) :839-844
[24]   Recent progress and perspectives on heteroatom doping of hematite photoanodes for photoelectrochemical water splitting [J].
Park, Juhyung ;
Kang, Jihun ;
Chaule, Sourav ;
Jang, Ji-Hyun .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (45) :24551-24565
[25]   Boosting Charge Transfer Efficiency by Nanofragment MXene for Efficient Photoelectrochemical Water Splitting of NiFe(OH)X Co- Catalyzed Hematite [J].
Park, Juhyung ;
Yoon, Ki-Yong ;
Kwak, Myung-Jun ;
Kang, Jihun ;
Kim, Suhee ;
Chaule, Sourav ;
Ha, Seong-Ji ;
Jang, Ji-Hyun .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (07) :9341-9349
[26]   Sn-Controlled Co-Doped Hematite for Efficient Solar-Assisted Chargeable Zn-Air Batteries [J].
Park, Juhyung ;
Yoon, Ki-Yong ;
Kwak, Myung-Jun ;
Lee, Jae-Eun ;
Kang, Jihun ;
Jang, Ji-Hyun .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (46) :54896-54905
[27]   Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes [J].
Pendlebury, Stephanie R. ;
Cowan, Alexander J. ;
Barroso, Monica ;
Sivula, Kevin ;
Ye, Jinhua ;
Graetzel, Michael ;
Klug, David R. ;
Tang, Junwang ;
Durrant, James R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (04) :6304-6312
[28]   Active Tetrahedral Iron Sites of γ-Fe2O3 Catalyzing NO Reduction by NH3 [J].
Qu, Weiye ;
Chen, Yaxin ;
Huang, Zhiwei ;
Gao, Jiayi ;
Zhou, Meijuan ;
Chen, Junxiao ;
Li, Chao ;
Ma, Zhen ;
Chen, Jianmin ;
Tang, Xingfu .
ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2017, 4 (06) :246-250
[29]   Density functional theory study of Al-doped hematite [J].
Rivera, Richard ;
Pinto, Henry P. ;
Stashans, Arvids ;
Piedra, Lorena .
PHYSICA SCRIPTA, 2012, 85 (01)
[30]   An ab initio model of electron transport in hematite (α-Fe2O3) basal planes [J].
Rosso, KM ;
Smith, DMA ;
Dupuis, M .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (14) :6455-6466