Multibeam Circular Endfire Array Incorporating Highly Efficient Nona-Band Rectifiers for IoT Energy Harvesting Applications

被引:1
作者
Islam, Saiful [1 ]
Zada, Muhammad [2 ]
Iman, Usman Rizqi [1 ]
Yoo, Hyoungsuk [1 ]
机构
[1] Hanyang Univ, Dept Elect Engn, Seoul 04763, South Korea
[2] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 12期
关键词
Rectifiers; Internet of Things; Antenna arrays; Radio frequency; Rectennas; Energy harvesting; Antennas; Antenna array; multiband; multibeam; rectifier; HIGH-CONVERSION-EFFICIENCY; POWER; INTERNET; RECTENNA; SYSTEM; RANGE;
D O I
10.1109/JIOT.2024.3383472
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduced a circularly arranged Vivaldi endfire antenna array combined with nona-band rectifiers to enhance the capability of receiving electromagnetic power to supply power for Internet of Things (IoT) devices. The rectifier encompasses frequencies of 0.9, 1.4, 1.8, 2.1, 2.4, 2.6, 3.5, 4.9, and 5.8 GHz, primarily covering telecom and Wi-Fi operating frequencies. Higher efficiency values at a lower input power of -10 dBm were achieved as 73.98%, 54.54%, 63.16%, 27.14%, 59.58%, 56.60%, 46.62%, 21.43, and 20.64% at 0.9, 1.4, 1.8, 2.1, 2.4, 2.6, 3.5, 4.9, and 5.8 GHz, respectively. In addition to the rectifier, we designed a wideband endfire Vivaldi antenna with a 3-8 dB gain over the operating frequencies, with an efficiency exceeding 80%. To further boost the received power, the antenna rectifier was transformed into an eight-element-based circular array, enabling multibeam and full-azimuth power reception coverage. We validated the performance of the rectifier and antenna by fabricating an energy-harvester array. Furthermore, we demonstrate the IoT device operation to illustrate the practical application of our proposed system.
引用
收藏
页码:22768 / 22778
页数:11
相关论文
共 42 条
  • [1] [Anonymous], 2023, SMS7630 Series Surface Mount Mixer and Detector Schottky Diodes
  • [2] A Compact Rectenna System With High Conversion Efficiency for Wireless Energy Harvesting
    Awais, Qasim
    Jin, Yang
    Chattha, Hassan Tariq
    Jamil, Mohsin
    Qiang, He
    Khawaja, Bilal A.
    [J]. IEEE ACCESS, 2018, 6 : 35857 - 35866
  • [3] Wideband Circularly Polarized Planar Antenna Array for 5G Millimeter-Wave Applications
    Cheng, Yang
    Dong, Yuandan
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (05) : 2615 - 2627
  • [4] Adaptive Self-Configurable Rectifier for Extended Operating Range of Piezoelectric Energy Harvesting
    Chew, Zheng Jun
    Zhu, Meiling
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (04) : 3267 - 3276
  • [5] Fog and IoT: An Overview of Research Opportunities
    Chiang, Mung
    Zhang, Tao
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2016, 3 (06): : 854 - 864
  • [6] High-efficiency super-elastic liquid metal based triboelectric fibers and textiles
    Dong, Chaoqun
    Leber, Andreas
    Das Gupta, Tapajyoti
    Chandran, Rajasundar
    Volpi, Marco
    Qu, Yunpeng
    Tung Nguyen-Dang
    Bartolomei, Nicola
    Yan, Wei
    Sorin, Fabien
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [7] Dual-Source Self-Start High-Efficiency Microscale Smart Energy Harvesting System for IoT
    Elhebeary, Mahmoud R.
    Ibrahim, Mahmoud A. A.
    Aboudina, Mohamed M.
    Mohieldin, Ahmed Nader
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (01) : 342 - 351
  • [8] A Fully Integrated Maximum Power Tracking Combiner for Energy Harvesting IoT Applications
    Estrada-Lopez, Johan J.
    Abuellil, Amr
    Costilla-Reyes, Alfredo
    Abouzied, Mohamed
    Yoon, Sungjun
    Sanchez-Sinencio, Edgar
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (04) : 2744 - 2754
  • [9] An On-Demand Energy Requesting Scheme for Wireless Energy Harvesting Powered IoT Networks
    Guntupalli, Lakshmikanth
    Gidlund, Mikael
    Li, Frank Y.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (04): : 2868 - 2879
  • [10] Collaboratively Harvesting Ambient Radiofrequency and Thermal Energy
    Guo, Lei
    Gu, Xiaoqiang
    Chu, Peng
    Hemour, Simon
    Wu, Ke
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (05) : 3736 - 3746