CERTAIN INVESTIGATIONS OF PSEUDO Z-SYMMETRIC SPACETIMES

被引:0
作者
Demirbag, Sezgin altay [1 ]
De chand, Uday [1 ]
Zengin, Fusun ozen [1 ,2 ]
机构
[1] Istanbul Tech Univ, Dept Math, TR-34349 Istanbul, Turkiye
[2] Univ Calcutta, Dept Pure Math, Kolkata 700019, West Bengal, India
关键词
pseudo Z-symmetric; GRW spacetime; RW spacetime; harmonic conformal curvature tensor; Riemann compatible; Weyl compatible; CURVATURE;
D O I
10.18514/MMN.2024.4254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The section 1 of this paper deals with the definition for a pseudo symmetric spacetime. In section 2, it is proved that a (PZS)4 spacetime satisfying Codazzi type of Z-tensor does not exist. In which condition a (PZS)4 spacetime can be a perfect fluid has been found as a necessary and sufficient condition. After that, special properties are obtained if the (PZS)4 spacetime has harmonic conformal curvature tensor.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 28 条
  • [1] Adati T., 1949, Proc. Jpn. Acad, V25, P188
  • [2] Alias L. J., 1995, Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, DOI [10.1007/BF02105675, DOI 10.1007/BF02105675]
  • [3] UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES
    ALIAS, LJ
    ROMERO, A
    SANCHEZ, M
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) : 71 - 84
  • [4] Aminova A. V., 1990, Ser.Probl. Geom., V22, P97
  • [5] [Anonymous], 1992, Bull.Inst.Math.Acad.Sinica
  • [6] [Anonymous], 1958, Acta Math.Acad.Sci.Hungar, DOI DOI 10.1007/BF02020266
  • [7] LAGRANGIAN EVOLUTION OF THE WEYL TENSOR
    BERTSCHINGER, E
    HAMILTON, AJS
    [J]. ASTROPHYSICAL JOURNAL, 1994, 435 (01) : 1 - 7
  • [8] Besse A., 1987, Einstein Manifolds, DOI DOI 10.1007/978-3-540-74311-8
  • [9] SOLITONS AND GEOMETRICAL STRUCTURES IN A PERFECT FLUID SPACETIME
    Blaga, Adara M.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (01) : 41 - 53
  • [10] Cartan E., 1926, Bulletin de la Societe Mathematique de France, V54, P214, DOI [10.24033/bsmf.1105, DOI 10.24033/BSMF.1105]