Prediction of deep molecular response in chronic myeloid leukemia using supervised machine learning models

被引:0
|
作者
Zad, Zahra [1 ,2 ]
Bonecker, Simone [3 ]
Wang, Taiyao [1 ,2 ]
Zalcberg, Ilana [3 ]
Stelzer, Gustavo T. [4 ]
Sabioni, Bruna [5 ]
Gutiyama, Luciana Mayumi [3 ]
Fleck, Julia L. [6 ]
Paschalidis, Ioannis Ch. [1 ,2 ,7 ,8 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Div Syst Engn, Dept Biomed Engn,Fac Comp & Data Sci, Boston, MA 02215 USA
[2] Boston Univ, Hariri Inst Comp & Computat Sci & Engn, Boston, MA 02215 USA
[3] Brazilian Natl Canc Inst INCA, Rio De Janeiro, Brazil
[4] Univ Fed Rio de Janeiro, Inst Med Biochem Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
[5] Univ Fed Rio de Janeiro, Clementino Fraga Filho Univ Hosp, Dept Hematol, Rio De Janeiro, RJ, Brazil
[6] Univ Clermont Auvergne, Ctr CIS, CNRS, Mines St Etienne,UMR LIMOS 6158, St Etienne, France
[7] Boston Univ, Dept Elect & Comp Engn, Dept Biomed Engn, Div Syst Engn, 8 St Marys St, Boston, MA 02215 USA
[8] Boston Univ, Fac Comp & Data Sci, 8 St Marys St, Boston, MA 02215 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Chronic Myeloid Leukemia (CML); Imatinib (IM); Deep Molecular Response (DMR); Treatment-free remission (TFR); Supervised Machine Learning; IMATINIB; SURVIVAL; CML;
D O I
10.1016/j.leukres.2024.107502
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Early and sustained deep molecular response achieved with nilotinib in high Sokal risk chronic myeloid leukemia patients
    Zaidi, Uzma
    Kaleem, Bushra
    Borhany, Munira
    Maqsood, Sidra
    Fatima, Naveena
    Sufaida, Gul
    Ansari, Saqib Hussain
    Farzana, Tasneem
    Shamsi, Tahir Sultan
    CANCER MANAGEMENT AND RESEARCH, 2019, 11 : 1493 - 1502
  • [32] Thyroid autoimmunity and hypothyroidism are associated with deep molecular response in patients with chronic myeloid leukemia on tyrosine kinase inhibitors
    Rodia, R.
    Pani, F.
    Caocci, G.
    La Nasa, G.
    Simula, M. P.
    Mulas, O.
    Velluzzi, F.
    Loviselli, A.
    Mariotti, S.
    Boi, F.
    JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2022, 45 (02) : 291 - 300
  • [33] Prediction Chronic Kidney Disease Progression In Diabetic patients using Machine Learning Models
    Apiromrak, Wasawat
    Toh, Chanavee
    Sangthawan, Pornpen
    Ingviya, Thammasin
    2024 21ST INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING, JCSSE 2024, 2024, : 566 - 573
  • [34] Failure of treatment-free remission after a prolonged deep molecular response in patients with chronic myeloid leukemia
    Nasnas, Patrice E.
    Jabbour, Elias J.
    Sasaki, Koji
    Issa, Ghayas C.
    Masarova, Lucia
    Short, Nicholas J.
    Haddad, Fadi G.
    ACTA HAEMATOLOGICA, 2024, : 105 - 110
  • [35] Explainable machine learning for chronic lymphocytic leukemia treatment prediction using only inexpensive tests
    Meiseles, Amiel
    Paley, Denis
    Ziv, Mira
    Hadid, Yarin
    Rokach, Lior
    Tadmor, Tamar
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [36] Molecular pathogenesis of chronic myeloid leukemia
    Webersinke G.
    memo - Magazine of European Medical Oncology, 2016, 9 (4) : 163 - 167
  • [37] Emergence role of nucleated red blood cells in molecular response evaluation for chronic myeloid leukemia
    Thang Thanh Phan
    Ha The Vy
    Toan Trong Ho
    Vinh Thanh Tran
    Tung Thanh Tran
    Suong Phuoc Pho
    Tuyen Thi Bich Pham
    Thao Thi Le
    Son Truong Nguyen
    INTERNATIONAL JOURNAL OF GENERAL MEDICINE, 2019, 12 : 333 - 341
  • [38] Performance of Sokal and Eutos Scores for Predicting Cytogenetic and Molecular Response in Newly Diagnosed Chronic Myeloid Leukemia-Chronic Phase Patients on Imatinib
    Ganguly, Sandip
    Lakshmaiah, K. C.
    Jacob, Linu Abraham
    Babu, Suresh
    Dasappa, Lokanatha
    Babu, K. S. Govind
    INDIAN JOURNAL OF HEMATOLOGY AND BLOOD TRANSFUSION, 2017, 33 (01) : 82 - 86
  • [39] Agricultural Production Output Prediction Using Supervised Machine Learning Techniques
    Shakoor, Md. Tahmid
    Rahman, Karishma
    Rayta, Sumaiya Nasrin
    Chakrabarty, Amitabha
    2017 1ST INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING APPLICATIONS (NEXTCOMP), 2017, : 182 - 187
  • [40] Novel tyrosine kinase inhibitors for patients with inadequate response in chronic myeloid leukemia
    Mauro, Michael J.
    CURRENT OPINION IN HEMATOLOGY, 2019, 26 (02) : 119 - 123