Prediction of deep molecular response in chronic myeloid leukemia using supervised machine learning models

被引:0
|
作者
Zad, Zahra [1 ,2 ]
Bonecker, Simone [3 ]
Wang, Taiyao [1 ,2 ]
Zalcberg, Ilana [3 ]
Stelzer, Gustavo T. [4 ]
Sabioni, Bruna [5 ]
Gutiyama, Luciana Mayumi [3 ]
Fleck, Julia L. [6 ]
Paschalidis, Ioannis Ch. [1 ,2 ,7 ,8 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Div Syst Engn, Dept Biomed Engn,Fac Comp & Data Sci, Boston, MA 02215 USA
[2] Boston Univ, Hariri Inst Comp & Computat Sci & Engn, Boston, MA 02215 USA
[3] Brazilian Natl Canc Inst INCA, Rio De Janeiro, Brazil
[4] Univ Fed Rio de Janeiro, Inst Med Biochem Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
[5] Univ Fed Rio de Janeiro, Clementino Fraga Filho Univ Hosp, Dept Hematol, Rio De Janeiro, RJ, Brazil
[6] Univ Clermont Auvergne, Ctr CIS, CNRS, Mines St Etienne,UMR LIMOS 6158, St Etienne, France
[7] Boston Univ, Dept Elect & Comp Engn, Dept Biomed Engn, Div Syst Engn, 8 St Marys St, Boston, MA 02215 USA
[8] Boston Univ, Fac Comp & Data Sci, 8 St Marys St, Boston, MA 02215 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Chronic Myeloid Leukemia (CML); Imatinib (IM); Deep Molecular Response (DMR); Treatment-free remission (TFR); Supervised Machine Learning; IMATINIB; SURVIVAL; CML;
D O I
10.1016/j.leukres.2024.107502
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Prognostic significance of early molecular response in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors
    Yeung, David T.
    Mauro, Michael J.
    HEMATOLOGY-AMERICAN SOCIETY OF HEMATOLOGY EDUCATION PROGRAM, 2014, : 240 - 243
  • [22] Prediction of automotive response using supervised machine learning in antilock braking systems and comparison with different models for improved vehicle safety
    Gunjate, Shital Suresh
    Khot, Sanjay A.
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [23] Dasatinib discontinuation in patients with chronic-phase chronic myeloid leukemia and stable deep molecular response: the DASFREE study
    Shah, Neil P.
    Garcia-Gutierrez, Valentin
    Jimenez-Velasco, Antonio
    Larson, Sarah
    Saussele, Susanne
    Rea, Delphine
    Mahon, Francois-Xavier
    Levy, Moshe Yair
    Gomez-Casares, Maria Teresa
    Pane, Fabrizio
    Nicolini, Franck-Emmanuel
    Mauro, Michael J.
    Sy, Oumar
    Martin-Regueira, Patricia
    Lipton, Jeffrey H.
    LEUKEMIA & LYMPHOMA, 2020, 61 (03) : 650 - 659
  • [24] A Robust Model for Churn Prediction using Supervised Machine Learning
    Bhatnagar, Anurag
    Srivastava, Sumit
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019), 2019, : 45 - 49
  • [25] Improved prediction of clinical outcome in chronic myeloid leukemia
    Cojbasic, Irena
    Macukanovic-Golubovic, Lana
    Mihailovic, Dragan
    Vucic, Miodrag
    Lukic, Stevo
    INTERNATIONAL JOURNAL OF HEMATOLOGY, 2015, 101 (02) : 173 - 183
  • [26] Response Dynamics in Chronic-Phase Chronic Myeloid Leukemia
    Mauro, Michael J.
    CLINICAL LYMPHOMA & MYELOMA, 2009, 9 (03) : 217 - 222
  • [27] Breast cancer prediction using supervised machine learning techniques
    Dadheech, Pankaj
    Kalmani, Vijay
    Dogiwal, Sanwta Ram
    Sharma, Vijay Kumar
    Kumar, Ankit
    Pandey, Saroj Kumar
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2023, 44 (03) : 383 - 392
  • [28] Efficient Water Quality Prediction Using Supervised Machine Learning
    Ahmed, Umair
    Mumtaz, Rafia
    Anwar, Hirra
    Shah, Asad A.
    Irfan, Rabia
    Garcia-Nieto, Jose
    WATER, 2019, 11 (11)
  • [29] New Tool for Monitoring Molecular Response in Patients With Chronic Myeloid Leukemia
    Badar, Talha
    Luthra, Rajyalakshmi
    Kantarjian, Hagop
    Jabbour, Elias
    Borthakur, Gautam
    Garcia-Manero, Guillermo
    Huang, Xuelin
    Singh, Rajesh
    Alvarez, Brittany
    Austermiller, Bradley
    Morrison, Tom B.
    Patel, Keyur P.
    Cortes, Jorge
    APPLIED IMMUNOHISTOCHEMISTRY & MOLECULAR MORPHOLOGY, 2019, 27 (01) : 33 - 39
  • [30] Sustained molecular response in chronic myeloid leukemia deep responders treated with low dose tyrosine kinase inhibitors
    Cayssials, Emilie
    Tartarin, Florence
    Guilhot, Joelle
    Sorel, Nathalie
    Chomel, Jean Claude
    Leleu, Xavier
    Guilhot, Francois
    LEUKEMIA & LYMPHOMA, 2018, 59 (03) : 766 - 769