Forest Management Type Identification Based on Stacking Ensemble Learning

被引:0
|
作者
Liu, Jiang [1 ]
Chen, Jingmin [2 ]
Chen, Shaozhi [3 ]
Wu, Keyi [1 ]
机构
[1] Chinese Acad Forestry, Res Inst Forestry Policy & Informat, Beijing 100091, Peoples R China
[2] Liaoning Zhanggutai Natl Nat Reserve Management Ct, Fuxin 123100, Peoples R China
[3] Chinese Acad Forestry, Beijing 100091, Peoples R China
来源
FORESTS | 2024年 / 15卷 / 05期
关键词
sustainable forest management; forestry informatization and digitization; Yichun Forestry Group; key decision-making indicator; stacking; feature selection; identification; TREE MANAGEMENT; VISUALIZATION; ALGORITHMS; DIVERSITY; GROWTH;
D O I
10.3390/f15050887
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Forest management is the fundamental approach to continuously improve forest quality and achieve the quadruple functions of forests. The identification of forest management types is the basis of forest management and a key technical link in the formulation of forest management plans. However, due to insufficient application of forestry informatization and digitization, there are problems in the organization and application of management types, such as inaccurate identification, diversified standards, long organizational cycles, and low decision-making efficiency. Typical technical models are difficult to widely promote and apply. To address these challenges, this study proposes the Stacking Ensemble Forest Management Type Identification (SEFMTI) method based on Stacking ensemble learning. Initially, four typical forest management types from the sustainable forest management pilot of the Yichun Forestry Group were selected as research subjects, and 19 stand parameters were chosen to form the research data, training various recognition models. Subsequently, the Least Absolute Shrinkage and Selection Operator (LASSO) regression and random forest (RF) methods were used to analyze key decision-making indicators for forest management type recognition and compare the performance of different models. The results show that (1) the SEFMTI model achieved an accuracy rate of 97.14%, effectively improving the accuracy of forest management type recognition while ensuring stability; (2) average age (AG), age group (AGG), crown density (CD), and stand origin (SO) are key decision-making indicators for recognizing forest management types; and (3) after feature selection, the SEFMTI model significantly enhanced the efficiency of model training while maintaining a high accuracy rate. The results validate the feasibility of the SEFMTI identification method, providing a basis for the gradual implementation of sustainable forest management pilots and aiding in the precise improvement of forest quality.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Landslide spatial prediction based on cascade forest and stacking ensemble learning algorithm
    Chen, Sijing
    Pan, Yutong
    Lu, Chengda
    Wang, Yawu
    Wu, Min
    Pedrycz, Witold
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2025, 56 (03) : 658 - 670
  • [2] Forest Cover Classification Using Stacking of Ensemble Learning and Neural Networks
    Patil, Pruthviraj R.
    Sivagami, M.
    ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY COMPUTATIONS IN ENGINEERING SYSTEMS, 2020, 1056 : 89 - 102
  • [3] Ensemble learning approach based on stacking for unmanned surface vehicle's dynamics
    Cheng, Chen
    Xu, Peng-Fei
    Cheng, Hongxia
    Ding, Yanxu
    Zheng, Jinhai
    Ge, Tong
    Sun, Dianhong
    Xu, Jin
    OCEAN ENGINEERING, 2020, 207
  • [4] A cross-entropy based stacking method in ensemble learning
    Ding, Weimin
    Wu, Shengli
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 4677 - 4688
  • [5] STACKION: Ion Channel-Modulating Peptides Identification Using Stacking-Based Ensemble Machine Learning
    Ali, Md. Mamun
    Ahmed, Kawsar
    Bui, Francis M.
    Chen, Li
    2023 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE, 2023,
  • [6] A machine learning-based approach for smart agriculture via stacking-based ensemble learning and feature selection methods
    Ben Abdallah, Emna
    Grati, Rima
    Boukadi, Khouloud
    2022 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT ENVIRONMENTS (IE), 2022,
  • [7] A stacking-based ensemble learning method for earthquake casualty prediction
    Cui, Shaoze
    Yin, Yunqiang
    Wang, Dujuan
    Li, Zhiwu
    Wang, Yanzhang
    APPLIED SOFT COMPUTING, 2021, 101 (101)
  • [8] SCORPION is a stacking-based ensemble learning framework for accurate prediction of phage virion proteins
    Ahmad, Saeed
    Charoenkwan, Phasit
    Quinn, Julian M. W.
    Moni, Mohammad Ali
    Hasan, Md Mehedi
    Lio, Pietro
    Shoombuatong, Watshara
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [9] A Stacking Ensemble Machine Learning Model for Emergency Call Forecasting
    Megouo, Talotsing Gaelle Patricia
    Pierre, Samuel
    IEEE ACCESS, 2024, 12 : 115820 - 115837
  • [10] A Fruit Tree Disease Diagnosis Model Based on Stacking Ensemble Learning
    Li, Honglei
    Jin, Ying
    Zhong, Jiliang
    Zhao, Ruixue
    COMPLEXITY, 2021, 2021