Ultra-sensitive temperature sensor based on PDMS filled Fabry-Perot cavity and air-bubble Fabry-Perot cavity in parallel

被引:0
|
作者
Han, Bowen [1 ]
Jiang, Chao [1 ]
Gao, Jiawei [1 ]
Gao, Ling [1 ]
Guo, Zihao [1 ]
Guo, Xiaoshan [1 ]
Li, Hong [1 ]
Sun, Simei [1 ]
机构
[1] Hubei Normal Univ, Coll Phys & Elect Sci, Hubei Engn Res Ctr Micronano Optoelect Devices & I, Hubei Key Lab Optoelect Convers Mat & Devices, Huangshi 435002, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Fiber temperature sensor; Fabry-Perot interferometer; Polydimethylsiloxane; Femtosecond laser pulse; Harmonic vernier effect; Vernier effect;
D O I
10.1016/j.optcom.2024.130829
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Highly sensitive fiber optic temperature sensors are designed and fabricated using the Vernier Effect (VE) and First-order Harmonic Vernier Effect (FHVE). The sensor comprises two Fabry-Perot cavities (F-P) in parallel. Single-mode fiber is fused together with a small segment of capillary, and then polydimethylsiloxane (PDMS) is filled in the capillary to form a sensing F-P cavity. The reference F-P cavity is composed of air-bubble inside the single-mode fiber etched by femtosecond laser. Two reference interferometers FPI1 and FPI2, as well as two sensing interferometers FPI3 and FPI4, were prepared using this method. The free spectral ranges (FSR) of FPI1, FPI2, FPI3, and FPI4 are 14.09 nm, 7.80 nm, 7.01 nm, and 6.48 nm, respectively. The temperature sensitivities of FPI3 and FPI4 are 2.2622 nm/degrees C and 2.4958 nm/degrees C, respectively. FPI1 and FPI2 are almost insensitive to temperature. FPI3 and FPI2 have similar FSR, and they generate traditional VE sensor in parallel, with a temperature sensitivity of 20.41 nm/degrees C, which is about 9.02 times that of FPI3. The FSR1 of FPI1 is approximately twice that of FPI3, and they generate FHVE1 in parallel. The temperature sensitivity of FHVE1 reaches -99.66 nm/degrees C, which is 44.05 times that of FPI3 and 4.88 times that of VE1. This is currently the highest known temperature sensitivity. In addition, the FSR1 of FPI1 is also approximately twice that of FPI4. Parallel connection between FPI4 and FPI1 can also generate FHVE2, but the sensitivity is only 22.17 nm/degrees C, which is 4.5 times lower than the sensitivity of FHVE1. From this, it can be seen that in FHVE, the smaller the FSR detuning (FSRr - (i+1) FSRs) between the sensing cavity and the reference cavity, the greater the amplification factor of sensitivity. The materials of the proposed sensor are cheap, easy to fabricate, and has high sensitivity. It can be used to measure temperature in environments with high sensitivity requirements.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fabry-Perot cavity filled with PDMS for high sensitivity gas pressure sensor
    Wang, Yuan
    Jiang, Chao
    Guo, Xiaoshan
    Sun, Simei
    Huang, Hulling
    Chen, Hailin
    Song, Jiao
    13TH INTERNATIONAL PHOTONICS AND OPTOELECTRONICS MEETINGS (POEM 2021), 2022, 12154
  • [2] Fabry-Perot cavity based on air bubble in multimode fiber for sensing applications
    Novais, S.
    Ferreira, M. S.
    Pinto, J. L.
    OPTICAL SENSING AND DETECTION V, 2018, 10680
  • [3] An in-fiber Acceleration Sensor based on Fabry-Perot Cavity
    Wang, Yulian
    Jiang, Liyue
    Liu, Wei
    Cao, Zhigang
    Zhen, Shenglai
    Xu, Feng
    2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2019,
  • [4] Compact strain fiber sensor based on Fabry-Perot microstructural air cavity
    Guo, Zhiwu
    Wang, Yannan
    Li, Jin
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2022, 50 (04) : 385 - 396
  • [5] Temperature and strain fiber sensor design based on microstructural Fabry-Perot cavity
    Li, Jin
    Wang, Yannan
    TWELFTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2021), 2021, 12057
  • [6] Sensitivity-enhanced Fabry-Perot filled with PDMS temperature sensor based on Vernier effect
    Hou, Leyi
    Xu, Ben
    Kang, Juan
    Zhao, Chunliu
    Jin, Shangzhong
    2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2018,
  • [7] Strain sensing with parallel air-cavity Fabry-Perot interferometers based on Vernier Effect
    Lashari, Ghulam Abbas
    Mumtaz, Farhan
    Ahmed, Sohail
    OPTICAL FIBER TECHNOLOGY, 2022, 74
  • [8] Ultra-sensitive relative humidity sensor formed by two parallel Fabry-Perot interferometers and Vernier effect
    Shu, Yukun
    Jiang, Chao
    Deng, Longfeng
    Hu, Chuanju
    Gao, Jiawei
    Li, Li
    Li, Hong
    Sun, Simei
    INFRARED PHYSICS & TECHNOLOGY, 2024, 137
  • [9] Fabry-Perot vector curvature sensor based on cavity length demodulation
    Zhu, Fuxing
    Zhang, Yundong
    Qu, Yanchen
    Su, Huaiyin
    Jiang, Weiguo
    Guo, Ying
    Qi, Kaiyue
    OPTICAL FIBER TECHNOLOGY, 2020, 60 (60)
  • [10] Fiber Optic Temperature Sensor System Using Air-Filled Fabry-Perot Cavity with Variable Pressure
    Chowdhury, Hasanur R. R.
    Han, Ming
    SENSORS, 2023, 23 (06)