Dynamic Cross-Sectional Temperature Imaging From LAS Labeled Electrical Tomography

被引:0
作者
Tian, Yu [1 ]
Cao, Zhang [1 ]
Xu, Lijun [1 ]
Yang, Wuqiang [2 ]
机构
[1] Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
[2] Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, England
基金
中国国家自然科学基金;
关键词
Combustion electrical tomography (ET); dual modality; laser absorption spectroscopy (LAS); temperature; FLAME; SPECTROSCOPY; MODALITY; FLOW;
D O I
10.1109/TIM.2024.3376016
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A laser absorption spectroscopy (LAS) fused electrical tomography (ET) is introduced to non-invasively measure the admittivity and temperature distributions of Bunsen burner flames. All the operations are carried out at the same region and height at multiple fuel-rich combustion states in the same cross section. The closer the fuel-to-air ratio of the combustion state is to one, the greater the values of admittivity and temperature. Random forest (RF) regression method is used to construct a mapping model for admittivity and combustion state to temperature. The maximum absolute error and relative error between mean temperatures of flame region estimated from reconstructed admittivity distributions and constructed mapping model with those measured by LAS are 60.45 K and 4.8%. The proposed method is used to monitor dynamic acoustically excited Bunsen burner flame, and the flame frequency measured in the spectrums of admittivity and temperature matches the measurements of a visible light photodetector. Experiments demonstrate the ability of ET to monitor the combustion states and temperature distribution of dynamic combustion fields.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 28 条
[1]   The Effect of Temperature on Soot Properties in Premixed Ethylene Flames [J].
Apicella, B. ;
Tregrossi, A. ;
Ciajolo, A. ;
Abrahamson, J. ;
Vander Wal, R. L. ;
Russo, C. .
COMBUSTION SCIENCE AND TECHNOLOGY, 2019, 191 (09) :1558-1570
[2]   On determining soot maturity: A review of the role of microscopy-and spectroscopy-based techniques [J].
Baldelli, Alberto ;
Trivanovic, Una ;
Sipkens, Timothy A. ;
Rogak, Steven N. .
CHEMOSPHERE, 2020, 252
[3]   A random forest guided tour [J].
Biau, Gerard ;
Scornet, Erwan .
TEST, 2016, 25 (02) :197-227
[4]   Direct Measurements of Permittivity of Plasma-Assisted Combustion Using Electrical Capacitance Tomography [J].
Chen, Qi ;
Jia, Yunhao ;
Mao, Xingqiao ;
Ju, Yiguang .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2016, 44 (12) :3009-3016
[5]   Flame Imaging in Meso-scalle Porous Media Burner Using Electrical Capacitance Tomography [J].
Chen Qi ;
Liu Shi .
CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2012, 20 (02) :329-336
[6]   Monitoring flame soot maturity by variable temperature Raman spectroscopy [J].
Commodo, Mario ;
Serra, Gianluca ;
Bocchicchio, Serafina ;
Minutolo, Patrizia ;
Tommasini, Matteo ;
D'Anna, Andrea .
FUEL, 2022, 321
[7]   Coherent anti-Stokes Raman spectroscopy of a premixed ethylene-air flame in a dual-mode scramjet [J].
Cutler, Andrew D. ;
Gallo, Emanuela C. A. ;
Cantu, Luca M. L. ;
Rockwell, Robert D. ;
Goyne, Christopher P. .
COMBUSTION AND FLAME, 2018, 189 :92-105
[8]  
Gao X, 2023, IEEE T INSTRUM MEAS, V72, DOI [10.1109/TIM.2022.3224522, 10.1109/TIM.2022.3227612]
[9]   Flame Imaging Using 3D Electrical Capacitance Tomography [J].
Gut, Zbigniew ;
Wolanski, Piotr .
COMBUSTION SCIENCE AND TECHNOLOGY, 2010, 182 (11-12) :1580-1585
[10]   Carbon nanostructure and reactivity of soot particles from non-intrusive methods based on UV-VIS spectroscopy and time-resolved laser-induced incandescence [J].
Hagen, Fabian P. ;
Kretzler, Daniel ;
Haeber, Thomas ;
Bockhorn, Henning ;
Suntz, Rainer ;
Trimis, Dimosthenis .
CARBON, 2021, 182 :634-654