Energy Calculation of Benzene Ring Based on the Variational Quantum Eigensolver Algorithm

被引:0
作者
Yang, Shilu [1 ]
Zhu, Qinsheng [1 ]
Wu, Hao [1 ]
Li, Xiaoyu [2 ]
Shang, Xiaolei [3 ]
Yang, Shan [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Peoples R China
[3] Kash Inst Elect & Informat Ind, Chengdu, Peoples R China
[4] Jackson State Univ, Dept Chem Phys & Atmospher Sci, Jackson, MS USA
来源
PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023 | 2024年 / 1126卷
关键词
Variational Quantum Eigensolver algorithm; Quantum computing; Variational principle; Ansatz; Quantum algorithms;
D O I
10.1007/978-981-99-9243-0_31
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In chemical molecular calculations, we usually obtain the most stable structure of molecules by calculating their ground state energy. But the resource and time consumption of these calculations will sharply increase with increasing of the complexity of molecules. Recent years, quantum computing which is a heuristic theory and technology is applied in this field based on the advantage of quantum algorithm. The Variational Quantum Eigensolver (VQE) algorithm which is one of the most promising contemporary applications of quantum computing present excellent powerful for calculating the molecular system energy. In this work, we use three different ansatzs to calculate the energy of the Benzene ring, including our self-designed ansatz and two mainstream ansatzs which are Hardware-Efficient Ansatz and Unitary Coupled Cluster Ansatz. Furthermore, we compare the calculation accuracy and calculation efficiency of the three different types of ansatzs, and investigate the factors influencing ansatz performance by using the calculation result of classical computing technique as the benchmark. Our work contributes to the generalization of the VQE technique to investigate the characteristics of complex molecules, establishing a fresh perspective for commonly employed electronic structure computations.
引用
收藏
页码:311 / 319
页数:9
相关论文
共 50 条
[41]   Towards an efficient variational quantum algorithm for solving linear equations [J].
Xu, WenShan ;
Zhou, Ri-Gui ;
Li, YaoChong ;
Zhang, XiaoXue .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (11)
[42]   Variational Quantum Based Simulation of Cylindrical Waveguides [J].
Colella, Emanuel ;
Baldwin, Benjamin A. ;
Kelso, Shaun F. ;
Bastianelli, Luca ;
Primiani, Valter Mariani ;
Moglie, Franco ;
Gradoni, Gabriele .
IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2025, 10 :104-111
[43]   Simulator Demonstration of Large Scale Variational Quantum Algorithm on HPC Cluster [J].
Morita, Mikio ;
Tomita, Yoshinori ;
Koyama, Junpei ;
Kimura, Koichi .
IEEE ACCESS, 2024, 12 :85219-85230
[44]   A Review of Quantum Machine Learning Algorithms Based on Variational Quantum Circuit [J].
Yu, Ruiqi ;
Zhang, Xinyun ;
Ren, Shuang .
Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2025, 62 (04) :821-851
[45]   Optimal Energy Management of Microgrids Using Quantum Teaching Learning Based Algorithm [J].
Raghav, L. Phani ;
Kumar, R. Seshu ;
Raju, D. Koteswara ;
Singh, Arvind R. .
IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (06) :4834-4842
[46]   Variational Quantum-Based Simulation of Waveguide Modes [J].
Ewe, Wei-Bin ;
Koh, Dax Enshan ;
Goh, Siong Thye ;
Chu, Hong-Son ;
Png, Ching Eng .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (05) :2517-2525
[47]   Quantum variational distance-based centroid classifier [J].
de Oliveira, Nicolas M. ;
Park, Daniel K. ;
Araujo, Israel F. ;
da Silva, Adenilton J. .
NEUROCOMPUTING, 2024, 576
[48]   Variational quantum-algorithm based self-consistent calculations for the two-site DMFT model on noisy quantum computing hardware [J].
Ehrlich, Jannis ;
Urban, Daniel F. ;
Elsaesser, Christian .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (22)
[49]   Quantum algorithm for de novo DNA sequence assembly based on quantum walks on graphs [J].
Varsamis, G. D. ;
Karafyllidis, I. G. ;
Gilkes, K. M. ;
Arranz, U. ;
Martin-Cuevas, R. ;
Calleja, G. ;
Wong, J. ;
Jessen, H. C. ;
Dimitrakis, P. ;
Kolovos, P. ;
Sandaltzopoulos, R. .
BIOSYSTEMS, 2023, 233
[50]   QuACS : Variational Quantum Algorithm for Coalition Structure Generation in Induced Subgraph Games [J].
Venkatesh, Supreeth Mysore ;
Macaluso, Antonio ;
Klusch, Matthias .
PROCEEDINGS OF THE 20TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2023, CF 2023, 2023, :197-200