Impacts of Land-Use Change from Primary Forest to Farmland on the Storage of Soil Organic Carbon

被引:1
|
作者
Xiao, Changgui [1 ]
Gong, Yaoqi [1 ]
Pei, Xiaolei [1 ]
Chen, Hanyue [1 ,2 ]
Li, Sheng [1 ]
Lu, Chengwen [1 ]
Chen, Li [1 ]
Zheng, Xuhui [1 ]
Zheng, Jiaxin [1 ]
Yan, Xie [1 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Resources & Environm, Fujian Prov Key Lab Soil Environm Hlth & Regulat, Fuzhou 350002, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 11期
关键词
primary forest; farmland; soil organic carbon; land-use change; meta-analysis; LOESS PLATEAU; NITROGEN; TILLAGE; AGGREGATE; STOCKS; CROP; MANAGEMENT; FRACTIONS; ROTATIONS; DYNAMICS;
D O I
10.3390/app14114736
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Land-use change (LUC) is a significant contributor to the increase in atmospheric CO2 concentrations, with previous studies demonstrating its profound impact on soil organic carbon (SOC). The conversion of primary forests to farmland has been recognized as the most significant type of LUC inducing CO2 release from the soil. Therefore, it is critical to understand the impacts of forest LUC on SOC storage, with a particular focus on primary forest to farmland conversion. In this study, we conducted a meta-analysis of 411 observations from 41 published works and found that SOC storage decreased significantly following the conversion of primary forests to farmland. Factors such as soil depth and climate zone influenced the degree of SOC storage loss, with SOC loss being less severe in deeper soil following a conversion from primary forests to farmland. Moreover, the loss of SOC storage was more severe in temperate regions compared to tropical regions. The input and output of surface SOC, changes in soil structure, and increases in atmospheric CO2 concentrations were significant reasons for the loss of SOC following primary forest to farmland LUC. However, improving tillage methods and implementing sustainable agricultural management strategies can help reduce SOC loss. These findings highlight the importance of sustainable land-use practices in mitigating the negative impacts of forest LUC on SOC storage and the global carbon cycle.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Perturbation of soil organic carbon induced by land-use change from primary forest
    Zhang, Zhiyuan
    Lu, Chengwen
    Chen, Jingyao
    Li, Sheng
    Zheng, Xuhui
    Zhang, Liming
    Zhang-Zheng, Huanyuan
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (12):
  • [2] Effects of Land-Use Change on Soil Organic Carbon and Nitrogen
    Jafarian, Zeinab
    Kavian, Ataollah
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2013, 44 (1-4) : 339 - 346
  • [3] Impacts of Land-Use Change, Slope, and Erosion on Soil Organic Carbon Retention and Storage
    Olson, Kenneth R.
    Gennadiyev, Alexander N.
    Zhidkin, Andrey P.
    Markelov, Maxim V.
    SOIL SCIENCE, 2012, 177 (04) : 269 - 278
  • [4] Forest land-use change affects soil organic carbon in tropical dry forests of the Peruvian Amazon
    Vallejos-Torres, Geomar
    Lozano-Chung, Andi
    Ordonez-Sanchez, Luis
    Garcia-Gonzales, Patricia
    Quinteros, Anibal
    Gaona-Jimenez, Nery
    Mendoza-Caballero, Wilfredo
    Macedo-Cordova, Wilder
    Saavedra-Ramirez, Jorge
    Baselly-Villanueva, Juan R.
    Marin, Cesar
    FOREST SYSTEMS, 2024, 33 (03)
  • [5] Soil organic carbon and soil erodibility response to various land-use changes in northern Thailand
    Arunrat, Noppol
    Sereenonchai, Sukanya
    Kongsurakan, Praeploy
    Hatano, Ryusuke
    CATENA, 2022, 219
  • [6] Impact of deforestation and temporal land-use change on soil organic carbon storage, quality, and lability
    Amoakwah, Emmanuel A.
    Lucas, Shawn
    Didenko, Nataliia
    Rahman, Mohammad
    Islam, Khandakar Rafiq
    PLOS ONE, 2022, 17 (08):
  • [7] Response of soil organic carbon to land-use change after farmland abandonment in the karst desertification control
    Mu, Yating
    Ye, Runcheng
    Xiong, Kangning
    Li, Yue
    Liu, Ziqi
    Long, Yidong
    Cai, Lulu
    Zhou, Qingping
    PLANT AND SOIL, 2024, 501 (1-2) : 595 - 610
  • [8] Effects of Land-Use Change on the Soil Organic Carbon and Selected Soil Properties in the Sultan Marshes, Turkey
    Korkanc, Selma Yasar
    Korkanc, Mustafa
    Mert, Muhammet Huseyin
    Gecili, Abdurrahman
    Serengil, Yusuf
    WETLANDS, 2022, 42 (06)
  • [9] Impacts of land-use intensity on soil organic carbon content, soil structure and water-holding capacity
    Acin-Carrera, M.
    Jose Marques, M.
    Carral, P.
    Alvarez, A. M.
    Lopez, C.
    Martin-Lopez, B.
    Gonzalez, J. A.
    SOIL USE AND MANAGEMENT, 2013, 29 (04) : 547 - 556
  • [10] Land-use change from poplar to switchgrass and giant reed increases soil organic carbon
    Nocentini, Andrea
    Monti, Andrea
    AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2017, 37 (04)