SteeraTool: Exploiting the potential of digital twin for data generation

被引:1
作者
Alnowaiser, Kholood K. [1 ,2 ]
Ahmed, Moataz A. [1 ,3 ]
机构
[1] KFUPM, Dept Informat & Comp Sci, Dhahran, Saudi Arabia
[2] IAU, Dept Comp Informat Syst, Dammam, Saudi Arabia
[3] KFUPM, SDAIA KFUPM Joint Res Ctr Artificial Intelligence, Dhahran, Saudi Arabia
关键词
Digital twin; Synthetic data generation; Machine learning for lateral control; MODEL-PREDICTIVE CONTROL; VEHICLE;
D O I
10.1016/j.iot.2024.101233
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autonomous driving heavily relies on accurate lateral control to ensure safe and reliable operation. In this paper, we present a novel approach to exploit the potential of digital twins for steering angle prediction in autonomous driving. Our method combines the use of a custom-built tool, SteeraTool, for generating a high -fidelity dataset, SteeraSet, of steering angle data with the implementation of a simple deep neural network architecture. The dataset was collected through simulations in a diverse range of scenarios. The neural network model was trained and evaluated on the generated dataset, and achieved promising results. Our work lays the groundwork to leverage the potential of digital twins in the area of lateral control. Moreover, SteeraTool can be used as a testbed in this area.
引用
收藏
页数:16
相关论文
共 44 条
[1]   A neural network model predictive controller [J].
Akesson, Bernt M. ;
Toivonen, Hannu T. .
JOURNAL OF PROCESS CONTROL, 2006, 16 (09) :937-946
[2]   Model Predictive Control for Vehicle Stabilization at the Limits of Handling [J].
Beal, Craig Earl ;
Gerdes, J. Christian .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (04) :1258-1269
[3]  
Bojarski M, 2016, Arxiv, DOI arXiv:1604.07316
[4]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[5]  
Carvalho A, 2013, IEEE INT C INTELL TR, P2335, DOI 10.1109/ITSC.2013.6728576
[6]   Multi-task learning for dangerous object detection in autonomous driving [J].
Chen, Yaran ;
Zhao, Dongbin ;
Lv, Le ;
Zhang, Qichao .
INFORMATION SCIENCES, 2018, 432 :559-571
[7]  
Chi L, 2017, Arxiv, DOI [arXiv:1708.03798, DOI 10.1145/3132734.3132737]
[8]  
de Franca B. B. N., 2015, CLEI Electron. J., V18
[9]  
Documentation Simulink, 2022, Lane following control with sensor fusion and lane detection
[10]   Why did the AI make that decision? Towards an explainable artificial intelligence (XAI) for autonomous driving systems [J].
Dong, Jiqian ;
Chen, Sikai ;
Miralinaghi, Mohammad ;
Chen, Tiantian ;
Li, Pei ;
Labi, Samuel .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 156