Fcg-Former: Identification of Functional Groups in FTIR Spectra Using Enhanced Transformer-Based Model

被引:5
作者
Doan, Vu Hoang Minh [1 ]
Ly, Cao Duong [2 ]
Mondal, Sudip [3 ]
Truong, Thi Thuy [4 ]
Nguyen, Tan Dung [4 ]
Choi, Jaeyeop [1 ]
Lee, Byeongil [3 ,4 ]
Oh, Junghwan [1 ,3 ,4 ,5 ]
机构
[1] Pukyong Natl Univ, Smart Gym Based Translat Res Ctr Act Sr Healthcare, Busan 48513, South Korea
[2] Sr AI Res Engineer Vis in Inc, Res & Dev Dept, Seoul 08505, South Korea
[3] Pukyong Natl Univ, Digital Healthcare Res Ctr, Busan 48513, South Korea
[4] Pukyong Natl Univ, Dept Biomed Engn, Ind 4 0 Convergence Bion Engn, Busan 48513, South Korea
[5] Ohlabs Corp, Busan 48513, South Korea
基金
新加坡国家研究基金会;
关键词
SPECTROSCOPY; PREDICTION; NETWORKS;
D O I
10.1021/acs.analchem.4c01622
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Deep learning (DL) is becoming more popular as a useful tool in various scientific domains, especially in chemistry applications. In the infrared spectroscopy field, where identifying functional groups in unknown compounds poses a significant challenge, there is a growing need for innovative approaches to streamline and enhance analysis processes. This study introduces a transformative approach leveraging a DL methodology based on transformer attention models. With a data set containing approximately 8677 spectra, our model utilizes self-attention mechanisms to capture complex spectral features and precisely predict 17 functional groups, outperforming conventional architectures in both functional group prediction accuracy and compound-level precision. The success of our approach underscores the potential of transformer-based methodologies in enhancing spectral analysis techniques.
引用
收藏
页码:12358 / 12369
页数:12
相关论文
共 60 条
[1]   Convolutional neural networks for vibrational spectroscopic data analysis [J].
Acquarelli, Jacopo ;
van Laarhoven, Twan ;
Gerretzen, Jan ;
Tran, Thanh N. ;
Buydens, Lutgarde M. C. ;
Marchiori, Elena .
ANALYTICA CHIMICA ACTA, 2017, 954 :22-31
[2]   Revealing ferroelectric switching character using deep recurrent neural networks [J].
Agar, Joshua C. ;
Naul, Brett ;
Pandya, Shishir ;
van Der Walt, Stefan ;
Maher, Joshua ;
Ren, Yao ;
Chen, Long-Qing ;
Kalinin, Sergei, V ;
Vasudevan, Rama K. ;
Cao, Ye ;
Bloom, Joshua S. ;
Martin, Lane W. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   Discrimination of Substandard and Falsified Formulations from Genuine Pharmaceuticals Using NIR Spectra and Machine Learning [J].
Awotunde, Olatunde ;
Roseboom, Nicholas ;
Cai, Jin ;
Hayes, Kathleen ;
Rajane, Revati ;
Chen, Ruoyan ;
Yusuf, Abdullah ;
Lieberman, Marya .
ANALYTICAL CHEMISTRY, 2022, 94 (37) :12586-12594
[4]  
Ba J, 2014, ACS SYM SER
[5]   FTIR spectroscopy of the atmosphere. I. Principles and methods [J].
Bacsik, Z ;
Mink, J ;
Keresztury, G .
APPLIED SPECTROSCOPY REVIEWS, 2004, 39 (03) :295-363
[6]   Using Fourier transform IR spectroscopy to analyze biological materials [J].
Baker, Matthew J. ;
Trevisan, Julio ;
Bassan, Paul ;
Bhargava, Rohit ;
Butler, Holly J. ;
Dorling, Konrad M. ;
Fielden, Peter R. ;
Fogarty, Simon W. ;
Fullwood, Nigel J. ;
Heys, Kelly A. ;
Hughes, Caryn ;
Lasch, Peter ;
Martin-Hirsch, Pierre L. ;
Obinaju, Blessing ;
Sockalingum, Ganesh D. ;
Sule-Suso, Josep ;
Strong, Rebecca J. ;
Walsh, Michael J. ;
Wood, Bayden R. ;
Gardner, Peter ;
Martin, Francis L. .
NATURE PROTOCOLS, 2014, 9 (08) :1771-1791
[7]  
Bhong M., 2023, Mater. Today Proc., DOI [10.1016/j.matpr.2023.10.026, DOI 10.1016/J.MATPR.2023.10.026]
[8]   Signal Modulation Classification Based on the Transformer Network [J].
Cai, Jingjing ;
Gan, Fengming ;
Cao, Xianghai ;
Liu, Wei .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (03) :1348-1357
[9]   Constrained transformer network for ECG signal processing and arrhythmia classification [J].
Che, Chao ;
Zhang, Peiliang ;
Zhu, Min ;
Qu, Yue ;
Jin, Bo .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
[10]   End-to-end quantitative analysis modeling of near-infrared spectroscopy based on convolutional neural network [J].
Chen, Yuan-Yuan ;
Wang, Zhi-Bin .
JOURNAL OF CHEMOMETRICS, 2019, 33 (05)