Fine Representation of Hessian of Convex Functions and Ricci Tensor on RCD Spaces

被引:0
作者
Brena, Camillo [1 ]
Gigli, Nicola [2 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[2] SISSA, Via Bonomea 265, Trieste 34136, Italy
关键词
METRIC-MEASURE-SPACES; CURVATURE; CALCULUS;
D O I
10.1007/s11118-024-10153-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that on RCD spaces one can define a distributional Ricci tensor Ric\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{Ric}$$\end{document}. Here we give a fine description of this object by showing that it admits the polar decomposition Ric=omega|Ric|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \textbf{Ric}=\omega \,|\textbf{Ric}| \end{aligned}$$\end{document}for a suitable non-negative measure |Ric|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\textbf{Ric}|$$\end{document} and unitary tensor field omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}. The regularity of both the mass measure and of the polar vector are also described. The representation provided here allows to answer some open problems about the structure of the Ricci tensor in such singular setting. Our discussion also covers the case of Hessians of convex functions and, under suitable assumptions on the base space, of the Sectional curvature operator.
引用
收藏
页码:703 / 737
页数:35
相关论文
共 39 条
[1]  
Ambrosio L., 2005, Gradient flows: in metric spaces and in the space ofprobability mea- sures, DOI 10.1007/b137080
[2]  
Ambrosio L., 2018, P INT C MATH RIO DE, VI, P301
[3]   Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces [J].
Ambrosio, Luigi ;
Mondino, Andrea ;
Savare, Giuseppe .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 262 (1270) :1-+
[4]   METRIC MEASURE SPACES WITH RIEMANNIAN RICCI CURVATURE BOUNDED FROM BELOW [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (07) :1405-1490
[5]   Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
INVENTIONES MATHEMATICAE, 2014, 195 (02) :289-391
[6]   BAKRY-EMERY CURVATURE-DIMENSION CONDITION AND RIEMANNIAN RICCI CURVATURE BOUNDS [J].
Ambrsio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
ANNALS OF PROBABILITY, 2015, 43 (01) :339-404
[8]  
[Anonymous], 2023, PREPRINT
[9]  
Bjorn A, 2011, EMS TRACTS MATH, V17, P1, DOI 10.4171/099
[10]  
Brena C., 2024, LOCAL VECTOR MEASURE, V286, DOI [10.1016/j.jfa.2023.110202, DOI 10.1016/J.JFA.2023.110202]