STUDY OF FRACTIONAL SEMIPOSITONE PROBLEMS ON RN

被引:4
作者
Biswas, Nirjan [1 ]
机构
[1] Tata Inst Fundamental Res, Ctr Applicable Math, Post Bag 6503, Bangalore 560065, India
关键词
semipositone problems; fractional operator; uniform regularity estimates; positive solutions; NONNEGATIVE SOLUTIONS; LAPLACIAN; EQUATION;
D O I
10.7494/OpMath.2024.44.4.445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let s is an element of (0, 1) and N > 2s. In this paper, we consider the following class of nonlocal semipositone problems: (-Delta)(s) u = g(x) fa(u) in R-N, u > 0 in R-N, where the weight g s L-1( R-N) n L-infinity(R-N) is positive, a > 0 is a parameter, and f(a) is an element of C(R) is strictly negative on (-infinity, 0]. For f(a) having subcritical growth and weaker Ambrosetti-Rabinowitz type nonlinearity, we prove that the above problem admits a mountain pass solution u(a), provided a is near zero. To obtain the positivity of u(a), we establish a Brezis-Kato type uniform estimate of ( u(a)) in L-r(R-N) for every r is an element of [ 2(N) /N-2s, infinity].
引用
收藏
页码:445 / 470
页数:26
相关论文
共 29 条
[1]   Existence of positive solutions for a class of semipositone problem in whole Double-struck capital RN [J].
Alves, Claudianor O. ;
de Holanda, Angelo R. F. ;
dos Santos, Jefferson A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (05) :2349-2367
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
Barbi G., 2022, Journal of Physics: Conference Series, V2177, DOI 10.1088/1742-6596/2177/1/012013
[4]   ON THE FOURTH ORDER SEMIPOSITONE PROBLEM IN RN [J].
Biswas, N. I. R. J. A. N. ;
DAS, U. J. J. A. L. ;
Sarkar, A. B. H. I. S. H. E. K. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (01) :411-434
[5]   The fractional Cheeger problem [J].
Brasco, L. ;
Lindgren, E. ;
Parini, E. .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) :419-458
[6]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[7]   SIMPLE PROOFS OF SOME RESULTS IN PERTURBED BIFURCATION-THEORY [J].
BROWN, KJ ;
SHIVAJI, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1982, 93 :71-82
[8]  
Bucur C, 2016, LECT NOTES UNIONE MA, V20, pXI
[9]   NON-NEGATIVE SOLUTIONS FOR A CLASS OF RADIALLY SYMMETRIC NON-POSITONE PROBLEMS [J].
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (03) :735-740
[10]   NON-NEGATIVE SOLUTIONS FOR A CLASS OF NON-POSITONE PROBLEMS [J].
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 108 :291-302