De novo synthetic antimicrobial peptide design with a recurrent neural network

被引:2
|
作者
Li, Chenkai [1 ,2 ]
Sutherland, Darcy [1 ,3 ,4 ]
Richter, Amelia [1 ,3 ]
Coombe, Lauren [1 ]
Yanai, Anat [1 ,3 ]
Warren, Rene L. [1 ]
Kotkoff, Monica [1 ]
Hof, Fraser [5 ,6 ]
Hoang, Linda M. N. [3 ,4 ]
Helbing, Caren C. [7 ]
Birol, Inanc [1 ,3 ,4 ,8 ]
机构
[1] BC Canc Agcy, Canadas Michael Smith Genome Sci Ctr, Vancouver, BC V5Z 4S6, Canada
[2] Univ British Columbia, Bioinformat Grad Program, Vancouver, BC, Canada
[3] British Columbia Ctr Dis Control, Publ Hlth Lab, Vancouver, BC, Canada
[4] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC, Canada
[5] Univ Victoria, Dept Chem, Victoria, BC, Canada
[6] Univ Victoria, Ctr Adv Mat & Related Technol, Victoria, BC, Canada
[7] Univ Victoria, Dept Biochem & Microbiol, Victoria, BC, Canada
[8] Univ British Columbia, Dept Med Genet, Vancouver, BC, Canada
关键词
antibiotic resistance; antimicrobial peptide; de novo peptide design; recurrent neural network; RESISTANCE;
D O I
10.1002/pro.5088
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Antibiotic resistance is recognized as an imminent and growing global health threat. New antimicrobial drugs are urgently needed due to the decreasing effectiveness of conventional small-molecule antibiotics. Antimicrobial peptides (AMPs), a class of host defense peptides, are emerging as promising candidates to address this need. The potential sequence space of amino acids is combinatorially vast, making it possible to extend the current arsenal of antimicrobial agents with a practically infinite number of new peptide-based candidates. However, mining naturally occurring AMPs, whether directly by wet lab screening methods or aided by bioinformatics prediction tools, has its theoretical limit regarding the number of samples or genomic/transcriptomic resources researchers have access to. Further, manually designing novel synthetic AMPs requires prior field knowledge, restricting its throughput. In silico sequence generation methods are gaining interest as a high-throughput solution to the problem. Here, we introduce AMPd-Up, a recurrent neural network based tool for de novo AMP design, and demonstrate its utility over existing methods. Validation of candidates designed by AMPd-Up through antimicrobial susceptibility testing revealed that 40 of the 58 generated sequences possessed antimicrobial activity against Escherichia coli and/or Staphylococcus aureus. These results illustrate that AMPd-Up can be used to design novel synthetic AMPs with potent activities.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Antimicrobial peptide capsids of de novo design
    De Santis, Emiliana
    Alkassem, Hasan
    Lamarre, Baptiste
    Faruqui, Nilofar
    Bella, Angelo
    Noble, James E.
    Micale, Nicola
    Ray, Santanu
    Burns, Jonathan R.
    Yon, Alexander R.
    Hoogenboom, Bart W.
    Ryadnov, Maxim G.
    NATURE COMMUNICATIONS, 2017, 8
  • [2] Antimicrobial peptide capsids of de novo design
    Emiliana De Santis
    Hasan Alkassem
    Baptiste Lamarre
    Nilofar Faruqui
    Angelo Bella
    James E. Noble
    Nicola Micale
    Santanu Ray
    Jonathan R. Burns
    Alexander R. Yon
    Bart W. Hoogenboom
    Maxim G. Ryadnov
    Nature Communications, 8
  • [3] Transcriptionally Conditional Recurrent Neural Network for De Novo Drug Design
    Matsukiyo, Yuki
    Tengeiji, Atsushi
    Li, Chen
    Yamanishi, Yoshihiro
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (15) : 5844 - 5852
  • [4] Optimizing Recurrent Neural Network Architectures for De Novo Drug Design
    Santos, Beatriz P.
    Abbasi, Maryam
    Pereira, Tiago
    Ribeiro, Bernardete
    Arrais, Joel P.
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 172 - 177
  • [5] Role of the Cyclization in De Novo Design of Antimicrobial Peptide Mimics
    Andreev, Konstantin
    Kosutic, Marija
    Ivankin, Andrey
    Huang, Mia
    Kirschenbaum, Kent
    Gidalevitz, David
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 493A - 493A
  • [6] Antimicrobial activity and properties of de novo design of short synthetic lipopeptides
    Kroneislova, Gabriela
    Macurkova, Anna
    Novotna, Zuzana
    Jezek, Rudolf
    Lovecka, Petra
    FOLIA MICROBIOLOGICA, 2024, 69 (02) : 445 - 457
  • [7] Antimicrobial activity and properties of de novo design of short synthetic lipopeptides
    Gabriela Kroneislová
    Anna Macůrková
    Zuzana Novotná
    Rudolf Ježek
    Petra Lovecká
    Folia Microbiologica, 2024, 69 : 445 - 457
  • [8] De Novo Antimicrobial Peptide Design with Feedback Generative Adversarial Networks
    Zervou, Michaela Areti
    Doutsi, Effrosyni
    Pantazis, Yannis
    Tsakalides, Panagiotis
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [9] De novo Design of a Leu-Arg-rich Antimicrobial Peptide
    MA QingquanSHAN AnshanDONG NaCAO Yanping Institute of Animal NutritionNortheast Agricultural UniversityHarbin China
    畜牧兽医学报, 2011, 42(S1) (S1) : 20 - 23
  • [10] De novo Design and Synthesis of Potent Antimicrobial Peptide and Mode of Action
    Yaraksa, Nualyai
    Daduang, Sakda
    CHIANG MAI JOURNAL OF SCIENCE, 2021, 48 (02): : 444 - 459