The v-Number of Binomial Edge Ideals

被引:0
作者
Ambhore, Siddhi Balu [1 ]
Saha, Kamalesh [1 ]
Sengupta, Indranath [1 ]
机构
[1] IIT Gandhinagar, Dept Math, Gandhinagar 382055, Gujarat, India
关键词
v-formula>-number; Binomial edge ideals; Castelnuovo-Mumford regularity; Initial ideals; Completion set; GRAPHS; REGULARITY;
D O I
10.1007/s40306-024-00540-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The invariant v-number was introduced very recently in the study of Reed-Muller-type codes. Jaramillo and Villarreal (J. Combin. Theory Ser. A 177:105310, 2021) initiated the study of the v-number of edge ideals. Inspired by their work, we take the initiation to study the v-number of binomial edge ideals in this paper. We discuss some properties and bounds of the v-number of binomial edge ideals. We explicitly find the v-number of binomial edge ideals locally at the associated prime corresponding to the cutset & empty;. We show that the v-number of Knutson binomial edge ideals is less than or equal to the v-number of their initial ideals. Also, we classify all binomial edge ideals whose v-number is 1. Moreover, we try to relate the v-number with the Castelnuvo-Mumford regularity of binomial edge ideals and give a conjecture in this direction.
引用
收藏
页码:611 / 628
页数:18
相关论文
共 33 条
[1]  
Atiyah M. F., 1969, Addison-Wesley series in mathematics
[2]   The Hilbert Scheme of the Diagonal in a Product of Projective Spaces [J].
Cartwright, Dustin ;
Sturmfels, Bernd .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (09) :1741-1771
[3]   The v-number and Castelnuovo-Mumford regularity of graphs [J].
Civan, Yusuf .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (01) :161-169
[4]   Universal Grobner Bases and Cartwright-Sturmfels Ideals [J].
Conca, A. ;
De Negri, E. ;
Gorla, E. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (07) :1979-1991
[5]   Square-free Grobner degenerations [J].
Conca, Aldo ;
Varbaro, Matteo .
INVENTIONES MATHEMATICAE, 2020, 221 (03) :713-730
[6]   Cartwright-Sturmfels ideals associated to graphs and linear spaces [J].
Conca, Aldo ;
De Negri, Emanuela ;
Gorla, Elisa .
JOURNAL OF COMBINATORIAL ALGEBRA, 2018, 2 (03) :231-257
[7]   Generalized minimum distance functions and algebraic invariants of Geramita ideals [J].
Cooper, Susan M. ;
Seceleanu, Alexandra ;
Tohaneanu, Stefan O. ;
Pinto, Maria Vaz ;
Villarreal, Rafael H. .
ADVANCES IN APPLIED MATHEMATICS, 2020, 112
[8]   On the regularity of binomial edge ideals [J].
Ene, Viviana ;
Zarojanu, Andrei .
MATHEMATISCHE NACHRICHTEN, 2015, 288 (01) :19-24
[9]   COHEN-MACAULAY BINOMIAL EDGE IDEALS [J].
Ene, Viviana ;
Herzog, Juergen ;
Hibi, Takayuki .
NAGOYA MATHEMATICAL JOURNAL, 2011, 204 :57-68
[10]  
Grayson D.R., 2009, MACAULAY2 SOFTWARE S