Lattice dynamics of lithium anti-perovskite solid-state electrolytes Li3OX (X = Cl, Br): An insight into thermal management from first-principles study

被引:0
作者
Lin, Chuang [1 ,2 ]
Zhang, Lin [1 ,2 ]
Dong, Yi [3 ]
机构
[1] Northeastern Univ, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Sch Mat Sci & Engn, Dept Mat Phys & Chem, Shenyang 110819, Peoples R China
[3] Univ Saarland, Dept Chem, D-66123 Saarbrucken, Germany
关键词
Solid-state electrolyte; Anti-perovskite; Thermal properties; Anharmonicity; First-principles calculation; TRANSPORT MECHANISMS; STABILITY;
D O I
10.1016/j.est.2024.113795
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, we have employed first-principles calculations based on density functional theory to investigate the thermal properties derived from lattice dynamics of lithium anti-perovskite solid-state electrolytes Li3OX (X = Cl, Br). Given the pronounced anharmonicity in their structures, we have examined the phonon spectra considering both harmonic and anharmonic effects at finite temperatures, as accurate phonon spectra are essential for the subsequent determination of thermal properties. The linear and volumetric thermal expansion coefficients have been evaluated using the quasi-harmonic approximation (QHA). Furthermore, we have assessed the macroscopic and phonon-mode Gruneisen parameters to quantify their anharmonicity. Incorporating higher-order anharmonic effects, we have performed phonon self-consistent calculations (SCPH) to determine the thermal conductivity and factors related to the phonon-gas model, including phonon group velocity, mean free path, and phonon lifetime. Our findings elucidate the underlying mechanisms governing the thermal behavior of antiperovskites, offering useful insights for thermal management of solid-state electrolytes.
引用
收藏
页数:10
相关论文
共 45 条
  • [1] Agne M. T., 2022, PRX Energy, V1, DOI [10.1103/prxenergy.1.031002, DOI 10.1103/PRXENERGY.1.031002]
  • [2] Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
    Bachman, John Christopher
    Muy, Sokseiha
    Grimaud, Alexis
    Chang, Hao-Hsun
    Pour, Nir
    Lux, Simon F.
    Paschos, Odysseas
    Maglia, Filippo
    Lupart, Saskia
    Lamp, Peter
    Giordano, Livia
    Shao-Horn, Yang
    [J]. CHEMICAL REVIEWS, 2016, 116 (01) : 140 - 162
  • [3] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [4] Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries
    Bock, Robert
    Onsrud, Morten
    Karoliussen, Havard
    Pollet, Bruno G.
    Seland, Frode
    Burheim, Odne S.
    [J]. ENERGIES, 2020, 13 (01)
  • [5] Novel Li3ClO based glasses with superionic properties for lithium batteries
    Braga, M. H.
    Ferreira, J. A.
    Stockhausen, V.
    Oliveira, J. E.
    El-Azab, A.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (15) : 5470 - 5480
  • [6] Nanoscale thermal transport
    Cahill, DG
    Ford, WK
    Goodson, KE
    Mahan, GD
    Majumdar, A
    Maris, HJ
    Merlin, R
    Phillpot, SR
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) : 793 - 818
  • [7] DynaPhoPy: A code for extracting phonon quasiparticles from molecular dynamics simulations
    Carreras, Abel
    Togo, Atsushi
    Tanaka, Isao
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2017, 221 : 221 - 234
  • [8] Thermal and solid electrolyte interphase characterization of lithium-ion battery
    Chang, Chia-Chin
    Huang, Sin-Yi
    Chen, Wei-Hsin
    [J]. ENERGY, 2019, 174 : 999 - 1011
  • [9] Anharmonicity and phase stability of antiperovskite Li3OCl
    Chen, Min-Hua
    Emly, Alexandra
    Van der Ven, Anton
    [J]. PHYSICAL REVIEW B, 2015, 91 (21):
  • [10] A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards
    Chen, Yuqing
    Kang, Yuqiong
    Zhao, Yun
    Wang, Li
    Liu, Jilei
    Li, Yanxi
    Liang, Zheng
    He, Xiangming
    Li, Xing
    Tavajohi, Naser
    Li, Baohua
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2021, 59 : 83 - 99