Sign-changing solitary waves for a quasilinear Schrödinger equation with general nonlinearity

被引:0
作者
Huang, Wentao [1 ]
Wang, Li [1 ]
机构
[1] East China Jiaotong Univ, Sch Basic Sci, Nanchang, Peoples R China
关键词
Quasilinear Schr & ouml; dinger equation; sign-changing solutions; perturbation technique; invariant sets in the descending flow; SCHRODINGER-EQUATIONS; MULTIPLE SOLUTIONS; NODAL SOLUTIONS; EXISTENCE; PLASMA;
D O I
10.1080/17476933.2024.2360948
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This research is undertaken with the primary objective of exploring a quasilinear Schr & ouml;dinger equation, a mathematical model of significant importance in describing diverse physical phenomena. Specifically, we direct our focus to the following equation: \[ -\Delta u +V(x)u-[\Delta(1+u<^>2)<^>{{1}/{2}}]\frac {u}{2(1+u<^>2)<^>\frac 12}= h(u), \quad x\in \mathbb{R}<^>N, \] -Delta u+V(x)u-[Delta(1+u2)1/2]u2(1+u2)12=h(u),x is an element of RN, where $ N\geq 3 $ N >= 3, V is a given positive potential and h represents a general nonlinearity. Employing an innovative perturbation technique and the method of invariant sets in the descending flow, we rigorously establish the existence and multiplicity of sign-changing solutions for the aforementioned problem. In particular, for pure power type nonlinearity $ h(u)=|u|<^>{p-2}u $ h(u)=|u|p-2u, we are concerned mostly with $ 2 \lt p\le 12-4\sqrt 6 $ 2<p <= 12-46.
引用
收藏
页数:27
相关论文
共 40 条
[31]   RELATIVISTIC SELF-FOCUSING AND CHANNEL FORMATION IN LASER-PLASMA INTERACTIONS [J].
RITCHIE, B .
PHYSICAL REVIEW E, 1994, 50 (02) :R687-R689
[32]   Ground state solutions for a quasilinear elliptic equation with general critical nonlinearity [J].
Shang, Tingting ;
Liang, Ruixi .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (04) :586-613
[33]   Soliton solutions for generalized quasilinear Schrodinger equations [J].
Shen, Yaotian ;
Wang, Youjun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 80 :194-201
[34]  
Struwe M., 2007, Variational Methods, Vfourth
[35]   Bound states to critical quasilinear Schrodinger equations [J].
Wang, Youjun ;
Zou, Wenming .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (01) :19-47
[36]  
Willem M., 1996, Minimax Theorems, V24, DOI DOI 10.1007/978-1-4612-4146-1
[37]   Multiple solutions for quasilinear Schrodinger equations with a parameter [J].
Wu, Xian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) :2619-2632
[38]   Soliton solutions for quasilinear Schrodinger equations [J].
Yang, Jun ;
Wang, Youjun ;
Abdelgadir, Ahamed Adam .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
[39]   Multiple radial and nonradial normalized solutions for a quasilinear Schrodinger equation [J].
Yang, Xianyong ;
Tang, Xianhua ;
Cheng, Bitao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (02)
[40]  
Zou W. M., 2006, CRITICAL POINT THEOR