Sign-changing solitary waves for a quasilinear Schrödinger equation with general nonlinearity

被引:0
作者
Huang, Wentao [1 ]
Wang, Li [1 ]
机构
[1] East China Jiaotong Univ, Sch Basic Sci, Nanchang, Peoples R China
关键词
Quasilinear Schr & ouml; dinger equation; sign-changing solutions; perturbation technique; invariant sets in the descending flow; SCHRODINGER-EQUATIONS; MULTIPLE SOLUTIONS; NODAL SOLUTIONS; EXISTENCE; PLASMA;
D O I
10.1080/17476933.2024.2360948
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This research is undertaken with the primary objective of exploring a quasilinear Schr & ouml;dinger equation, a mathematical model of significant importance in describing diverse physical phenomena. Specifically, we direct our focus to the following equation: \[ -\Delta u +V(x)u-[\Delta(1+u<^>2)<^>{{1}/{2}}]\frac {u}{2(1+u<^>2)<^>\frac 12}= h(u), \quad x\in \mathbb{R}<^>N, \] -Delta u+V(x)u-[Delta(1+u2)1/2]u2(1+u2)12=h(u),x is an element of RN, where $ N\geq 3 $ N >= 3, V is a given positive potential and h represents a general nonlinearity. Employing an innovative perturbation technique and the method of invariant sets in the descending flow, we rigorously establish the existence and multiplicity of sign-changing solutions for the aforementioned problem. In particular, for pure power type nonlinearity $ h(u)=|u|<^>{p-2}u $ h(u)=|u|p-2u, we are concerned mostly with $ 2 \lt p\le 12-4\sqrt 6 $ 2<p <= 12-46.
引用
收藏
页数:27
相关论文
共 40 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Nodal solutions of a p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :129-152
[3]   On a superlinear elliptic p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) :149-175
[4]   Sign changing solutions of superlinear Schrodinger equations [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :25-42
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]   RELATIVISTIC AND PONDEROMOTIVE SELF-FOCUSING OF A LASER-BEAM IN A RADIALLY INHOMOGENEOUS-PLASMA .1. PARAXIAL APPROXIMATION [J].
BRANDI, HS ;
MANUS, C ;
MAINFRAY, G ;
LEHNER, T ;
BONNAUD, G .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (10) :3539-3550
[7]   NECESSARY AND SUFFICIENT CONDITIONS FOR SELF-FOCUSING OF SHORT ULTRAINTENSE LASER-PULSE IN UNDERDENSE PLASMA [J].
CHEN, XL ;
SUDAN, RN .
PHYSICAL REVIEW LETTERS, 1993, 70 (14) :2082-2085
[8]   Existence of positive solutions for a quasilinear Schrodinger equation [J].
Chu, Changmu ;
Liu, Haidong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 44 :118-127
[9]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[10]   Global existence of small solutions to a relativistic nonlinear Schrodinger equation [J].
deBouard, A ;
Hayashi, N ;
Saut, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (01) :73-105