Machine learning-based prognostication of mortality in stroke patients

被引:8
作者
Abujaber, Ahmad A. [1 ]
Albalkhi, Ibrahem [2 ,3 ]
Imam, Yahia [4 ]
Nashwan, Abdulqadir [1 ]
Akhtar, Naveed [4 ]
Alkhawaldeh, Ibraheem M. [5 ]
机构
[1] Hamad Med Corp, Nursing Dept, POB 3050, Doha, Qatar
[2] Alfaisal Univ, Coll Med, Riyadh, Saudi Arabia
[3] Great Ormond St Hosp NHS Fdn Trust, Dept Neuroradiol, Great Ormond St, London WC1N 3JH, England
[4] Hamad Med Corp, Neurosci Inst, Neurol Sect, Doha, Qatar
[5] Mutah Univ, Fac Med, Al Karak, Jordan
关键词
Stroke; Prognosis; Mortality; Ischemic stroke; Hemorrhagic stroke; Machine learning; ACUTE ISCHEMIC-STROKE; BLOOD-PRESSURE; APACHE-II; OUTCOMES; CARE; CLASSIFICATION; RISK;
D O I
10.1016/j.heliyon.2024.e28869
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objectives: Predicting stroke mortality is crucial for personalized care. This study aims to design and evaluate a machine learning model to predict one-year mortality after a stroke. Materials and methods: Data from the National Multiethnic Stroke Registry was utilized. Eight machine learning (ML) models were trained and evaluated using various metrics. SHapley Additive exPlanations (SHAP) analysis was used to identify the influential predictors. Results: The final analysis included 9840 patients diagnosed with stroke were included in the study. The XGBoost algorithm exhibited optimal performance with high accuracy (94.5%) and AUC (87.3%). Core predictors encompassed National Institutes of Health Stroke Scale (NIHSS) at admission, age, hospital length of stay, mode of arrival, heart rate, and blood pressure. Increased NIHSS, age, and longer stay correlated with higher mortality. Ambulance arrival and lower diastolic blood pressure and lower body mass index predicted poorer outcomes. Conclusions: This model 's predictive capacity emphasizes the significance of NIHSS, age, hospital stay, arrival mode, heart rate, blood pressure, and BMI in stroke mortality prediction. Specific findings suggest avenues for data quality enhancement, registry expansion, and real -world validation. The study underscores machine learning 's potential for early mortality prediction, improving risk assessment, and personalized care. The potential transformation of care delivery through robust ML predictive tools for Stroke outcomes could revolutionize patient care, allowing for personalized plans and improved preventive strategies for stroke patients. However, it is imperative to conduct prospective validation to evaluate its practical clinical effectiveness and ensure its successful adoption across various healthcare environments.
引用
收藏
页数:11
相关论文
共 82 条
[1]   Predicting short and long-term mortality after acute ischemic stroke using EHR [J].
Abedi, Vida ;
Avula, Venkatesh ;
Razavi, Seyed-Mostafa ;
Bavishi, Shreya ;
Chaudhary, Durgesh ;
Shahjouei, Shima ;
Wang, Ming ;
Griessenauer, Christoph J. ;
Li, Jiang ;
Zand, Ramin .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2021, 427
[2]  
Abujaber A., 2022, Intell Based Med, V6
[3]  
Abujaber Ahmad A., 2022, Informatics in Medicine Unlocked, DOI 10.1016/j.imu.2022.101090
[4]   Prediction of in-hospital mortality in patients with post traumatic brain injury using National Trauma Registry and Machine Learning Approach [J].
Abujaber, Ahmad ;
Fadlalla, Adam ;
Gammoh, Diala ;
Abdelrahman, Husham ;
Mollazehi, Monira ;
El-Menyar, Ayman .
SCANDINAVIAN JOURNAL OF TRAUMA RESUSCITATION & EMERGENCY MEDICINE, 2020, 28 (01)
[5]   Predicting 90-day prognosis for patients with stroke: a machine learning approach [J].
Abujaber, Ahmad A. ;
Alkhawaldeh, Ibraheem M. ;
Imam, Yahia ;
Nashwan, Abdulqadir J. ;
Akhtar, Naveed ;
Own, Ahmed ;
Tarawneh, Ahmad S. ;
Hassanat, Ahmad B. .
FRONTIERS IN NEUROLOGY, 2023, 14
[6]   Predicting 90-Day Prognosis in Ischemic Stroke Patients Post Thrombolysis Using Machine Learning [J].
Abujaber, Ahmad A. ;
Albalkhi, Ibrahem ;
Imam, Yahia ;
Nashwan, Abdulqadir J. ;
Yaseen, Said ;
Akhtar, Naveed ;
Alkhawaldeh, Ibraheem M. .
JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (11)
[7]   CLASSIFICATION OF SUBTYPE OF ACUTE ISCHEMIC STROKE - DEFINITIONS FOR USE IN A MULTICENTER CLINICAL-TRIAL [J].
ADAMS, HP ;
BENDIXEN, BH ;
KAPPELLE, LJ ;
BILLER, J ;
LOVE, BB ;
GORDON, DL ;
MARSH, EE ;
KASE, CS ;
WOLF, PA ;
BABIKIAN, VL ;
LICATAGEHR, EE ;
ALLEN, N ;
BRASS, LM ;
FAYAD, PB ;
PAVALKIS, FJ ;
WEINBERGER, JM ;
TUHRIM, S ;
RUDOLPH, SH ;
HOROWITZ, DR ;
BITTON, A ;
MOHR, JP ;
SACCO, RL ;
CLAVIJO, M ;
ROSENBAUM, DM ;
SPARR, SA ;
KATZ, P ;
KLONOWSKI, E ;
CULEBRAS, A ;
CAREY, G ;
MARTIR, NI ;
FICARRA, C ;
HOGAN, EL ;
CARTER, T ;
GURECKI, P ;
MUNTZ, BK ;
RAMIREZLASSEPAS, M ;
TULLOCH, JW ;
QUINONES, MR ;
MENDEZ, M ;
ZHANG, SM ;
ALA, T ;
JOHNSTON, KC ;
ANDERSON, DC ;
TARREL, RM ;
NANCE, MA ;
BUDLIE, SR ;
DIERICH, M ;
HELGASON, CM ;
HIER, DB ;
SHAPIRO, RA .
STROKE, 1993, 24 (01) :35-41
[8]   The Impact of Diabetes on Outcomes After Acute Ischemic Stroke: A Prospective Observational Study [J].
Akhtar, Naveed ;
Kamran, Saadat ;
Singh, Rajvir ;
Malik, Rayaz A. ;
Deleu, Dirk ;
Bourke, Paula J. ;
Joseph, Sujatha ;
Santos, Mark D. ;
Morgan, Deborah M. ;
Wadiwala, Faisal M. ;
Francis, Reny ;
Babu, Blessy M. ;
George, Pooja ;
Ibrahim, Rumissa ;
Garcia-Bermejo, Pablo ;
Shuaib, Ashfaq .
JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2019, 28 (03) :619-626
[9]   Beneficial Effects of Implementing Stroke Protocols Require Establishment of a Geographically Distinct Unit [J].
Akhtar, Naveed ;
Kamran, Saadat ;
Singh, Rajvir ;
Cameron, Peter ;
D'Souza, Atlantic ;
Imam, Yahya ;
Bourke, Paula ;
Joseph, Sujatha ;
Khan, Rabia ;
Santos, Mark ;
Deleu, Dirk ;
El-Zouki, Abdel ;
Abou-Samra, Abdul ;
Butt, Adeel A. ;
Shuaib, Ashfaq .
STROKE, 2015, 46 (12) :3494-3501
[10]   Predicting Risk of Stroke From Lab Tests Using Machine Learning Algorithms: Development and Evaluation of Prediction Models [J].
Alanazi, Eman M. ;
Abdou, Aalaa ;
Luo, Jake .
JMIR FORMATIVE RESEARCH, 2021, 5 (12)