For the large-scale linear discrete ill -posed problems with multiple right-hand sides, the global Krylov subspace iterative methods have received a lot of attention. In this paper, we analyze the regularizing properties of the global generalized minimum error method (GMERR), and develop a regularized global GMERR method for solving linear discrete ill -posed problems with multiple right-hand sides. The efficiency of the proposed method is confirmed by the numerical experiments on test matrices.
机构:
Univ Estado Rio De Janeiro, Dept Elect & Telecommun Engn, Rua Sao Fransciso Xavier 524, BR-20550900 Rio De Janeiro, BrazilUniv Estado Rio De Janeiro, Dept Elect & Telecommun Engn, Rua Sao Fransciso Xavier 524, BR-20550900 Rio De Janeiro, Brazil
Pazos, Fernando
Bhaya, Amit
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Dept Elect Engn, PEE COPPE UFRJ, POB 68504, BR-21945970 Rio De Janeiro, BrazilUniv Estado Rio De Janeiro, Dept Elect & Telecommun Engn, Rua Sao Fransciso Xavier 524, BR-20550900 Rio De Janeiro, Brazil