For the large-scale linear discrete ill -posed problems with multiple right-hand sides, the global Krylov subspace iterative methods have received a lot of attention. In this paper, we analyze the regularizing properties of the global generalized minimum error method (GMERR), and develop a regularized global GMERR method for solving linear discrete ill -posed problems with multiple right-hand sides. The efficiency of the proposed method is confirmed by the numerical experiments on test matrices.
机构:
Kent State Univ, Dept Math Sci, Kent, OH 44242 USAKent State Univ, Dept Math Sci, Kent, OH 44242 USA
Bai, Xianglan
Huang, Guang-Xin
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Geomath Key Lab Sichuan, Chengdu 610059, Peoples R ChinaKent State Univ, Dept Math Sci, Kent, OH 44242 USA
Huang, Guang-Xin
Lei, Xiao-Jun
论文数: 0引用数: 0
h-index: 0
机构:
China Acad Engn Phys, Grad Sch, Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R ChinaKent State Univ, Dept Math Sci, Kent, OH 44242 USA
Lei, Xiao-Jun
Reichel, Lothar
论文数: 0引用数: 0
h-index: 0
机构:
Kent State Univ, Dept Math Sci, Kent, OH 44242 USAKent State Univ, Dept Math Sci, Kent, OH 44242 USA
Reichel, Lothar
Yin, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ Sci & Engn, Coll Math & Stat, Zigong 643000, Peoples R ChinaKent State Univ, Dept Math Sci, Kent, OH 44242 USA