Neural Surface Reconstruction of Dynamic Scenes with Monocular RGB-D Camera

被引:0
|
作者
Cai, Hongrui [1 ]
Feng, Wanquan [1 ]
Feng, Xuetao [2 ]
Wang, Yan [2 ]
Zhang, Juyong [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Alibaba Grp, Hangzhou, Peoples R China
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022) | 2022年
基金
中国国家自然科学基金;
关键词
3D; SHAPE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose Neural-DynamicReconstruction (NDR), a template-free method to recover high-fidelity geometry and motions of a dynamic scene from a monocular RGB-D camera. In NDR, we adopt the neural implicit function for surface representation and rendering such that the captured color and depth can be fully utilized to jointly optimize the surface and deformations. To represent and constrain the non-rigid deformations, we propose a novel neural invertible deforming network such that the cycle consistency between arbitrary two frames is automatically satisfied. Considering that the surface topology of dynamic scene might change over time, we employ a topology-aware strategy to construct the topology-variant correspondence for the fused frames. NDR also further refines the camera poses in a global optimization manner. Experiments on public datasets and our collected dataset demonstrate that NDR outperforms existing monocular dynamic reconstruction methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Optimized Method for Real-time Texture Reconstruction with RGB-D Camera
    Hou Y.
    Li H.
    Liu C.
    Zhang L.
    Transactions of Tianjin University, 2017, 23 (5) : 493 - 500
  • [42] Plane-Based Optimization of Geometry and Texture for RGB-D Reconstruction of Indoor Scenes
    Wang, Chao
    Guo, Xiaohu
    2018 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2018, : 533 - 541
  • [43] A Robust Visual SLAM System Based on RGB-D Camera Used in Various Indoor Scenes
    Li, Long
    Li, Angsong
    Tian, Yingzhong
    Wang, Wenbin
    Chen, Wei
    Fan, Yining
    Xi, Fengfeng
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2018, : 1632 - 1637
  • [44] RGB-D IBR: Rendering Indoor Scenes Using Sparse RGB-D Images with Local Alignments
    Jeong, Yeongyu
    Kim, Haejoon
    Seo, Hyewon
    Cordier, Frederic
    Lee, Seungyong
    PROCEEDINGS I3D 2016: 20TH ACM SIGGRAPH SYMPOSIUM ON INTERACTIVE 3D GRAPHICS AND GAMES, 2016, : 205 - 206
  • [45] 3-D Mapping With an RGB-D Camera
    Endres, Felix
    Hess, Juergen
    Sturm, Juergen
    Cremers, Daniel
    Burgard, Wolfram
    IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (01) : 177 - 187
  • [46] StaticFusion: Background Reconstruction for Dense RGB-D SLAM in Dynamic Environments
    Scona, Raluca
    Jaimez, Mariano
    Petillot, Yvan R.
    Fallon, Maurice
    Cremers, Daniel
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 3849 - 3856
  • [47] Towards an Omnidirectional Catadioptric RGB-D Camera
    Iglesias, Jose
    Mirado, Pedro
    Ventura, Rodrigo
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 2506 - 2513
  • [48] Modeling Hair from an RGB-D Camera
    Zhang, Meng
    Wu, Pan
    Wu, Hongzhi
    Weng, Yanlin
    Zheng, Youyi
    Zhou, Kun
    SIGGRAPH ASIA'18: SIGGRAPH ASIA 2018 TECHNICAL PAPERS, 2018,
  • [49] Evaluation of RGB-D Multi-Camera Pose Estimation for 3D Reconstruction
    de Medeiros Esper, Ian
    Smolkin, Oleh
    Manko, Maksym
    Popov, Anton
    From, Pal Johan
    Mason, Alex
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [50] A Review of RGB-D Camera Calibration Methods
    Chenyang ZHANG
    Teng HUANG
    Yueqian SHEN
    JournalofGeodesyandGeoinformationScience, 2021, 4 (04) : 11 - 33