Neural Surface Reconstruction of Dynamic Scenes with Monocular RGB-D Camera

被引:0
|
作者
Cai, Hongrui [1 ]
Feng, Wanquan [1 ]
Feng, Xuetao [2 ]
Wang, Yan [2 ]
Zhang, Juyong [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Alibaba Grp, Hangzhou, Peoples R China
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022) | 2022年
基金
中国国家自然科学基金;
关键词
3D; SHAPE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose Neural-DynamicReconstruction (NDR), a template-free method to recover high-fidelity geometry and motions of a dynamic scene from a monocular RGB-D camera. In NDR, we adopt the neural implicit function for surface representation and rendering such that the captured color and depth can be fully utilized to jointly optimize the surface and deformations. To represent and constrain the non-rigid deformations, we propose a novel neural invertible deforming network such that the cycle consistency between arbitrary two frames is automatically satisfied. Considering that the surface topology of dynamic scene might change over time, we employ a topology-aware strategy to construct the topology-variant correspondence for the fused frames. NDR also further refines the camera poses in a global optimization manner. Experiments on public datasets and our collected dataset demonstrate that NDR outperforms existing monocular dynamic reconstruction methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Neural RGB-D Surface Reconstruction
    Azinovic, Dejan
    Martin-Brualla, Ricardo
    Goldman, Dan B.
    Niessner, Matthias
    Thies, Justus
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6280 - 6291
  • [2] 3D Reconstruction of Indoor Scenes Using RGB-D Monocular Vision
    Liu, Sanmao
    Zhu, Wenqiu
    Zhang, Canqing
    Sun, Wenjing
    2016 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS), 2016, : 1 - 7
  • [3] DynamicSurf: Dynamic Neural RGB-D Surface Reconstruction With an Optimizable Feature Grid
    Mohamed, Mirgahney
    Agapito, Lourdes
    2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 820 - 830
  • [4] Interior dense 3D reconstruction system with RGB-D camera for complex large scenes
    Fu, Xiaofan
    Li, Guangqiang
    Yu, Lei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (01)
  • [5] Monocular Depth Estimation of Outdoor Scenes Using RGB-D Datasets
    Bi, Tianteng
    Liu, Yue
    Weng, Dongdong
    Wang, Yongtian
    COMPUTER VISION - ACCV 2016 WORKSHOPS, PT II, 2017, 10117 : 88 - 99
  • [6] Electroholography of real scenes by RGB-D camera and the downsampling method
    Hasegawa, Satoki
    Yanagihara, Hidenari
    Yamamoto, Yota
    Kakue, Takashi
    Shimobaba, Tomoyoshi
    Ito, Tomoyoshi
    OSA CONTINUUM, 2019, 2 (05) : 1629 - 1638
  • [7] Spatiotemporal Texture Reconstruction for Dynamic Objects Using a Single RGB-D Camera
    Kim, Hyomin
    Kim, Jungeon
    Nam, Hyeonseo
    Park, Jaesik
    Lee, Seungyong
    COMPUTER GRAPHICS FORUM, 2021, 40 (02) : 523 - 535
  • [8] VISUAL ODOMETRY FOR RGB-D CAMERAS FOR DYNAMIC SCENES
    Azartash, Haleh
    Lee, Kyoung-Rok
    Nguyen, Truong Q.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [9] A Compatible Framework for RGB-D SLAM in Dynamic Scenes
    Zhao, Lili
    Liu, Zhili
    Chen, Jianwen
    Cai, Weitong
    Wang, Wenyi
    Zeng, Liaoyuan
    IEEE ACCESS, 2019, 7 : 75604 - 75614
  • [10] Wound detection and reconstruction using RGB-D camera
    Filko, Damir
    Nyarko, Emmanuel Karlo
    Cupec, Robert
    2016 39TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2016, : 1217 - 1222