Heterointerface MnO2/RuO2 with rich oxygen vacancies for enhanced oxygen evolution in acidic media

被引:6
作者
Guan, Zhiming [1 ]
Chen, Qian [1 ]
Liu, Lin [1 ]
Xia, Chenghui [1 ]
Cao, Lixin [1 ]
Dong, Bohua [1 ]
机构
[1] Ocean Univ China, Sch Mat Sci & Engn, 1299 Sansha Rd, Qingdao 266000, Peoples R China
基金
中国博士后科学基金;
关键词
HIGH-EFFICIENCY; WATER; DURABILITY; NANORODS; CATALYST;
D O I
10.1039/d4nr00827h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The design and synthesis of oxygen evolution reaction (OER) electrocatalysts that operate efficiently and stably under acidic conditions are important for the preparation of green hydrogen energy. The low intrinsic catalytic activity and poor acid resistance of commercial RuO2 limit its further development, and the construction of heterointerface structures is the most promising strategy to break through the intrinsic activity limitation of electrocatalysts. Herein, we synthesized spherical and oxygen vacancy-rich heterointerface MnO2/RuO2 using morphology control, which promoted the kinetics of the oxygen evolution reaction with the interaction between oxygen vacancies and the oxide heterointerface. MnO2/RuO2 was reported to be an acidic OER catalyst with excellent performance and stability, requiring only an ultra-low overpotential of 181 mV in 0.5 M H2SO4 to achieve a current density of 10 mA cm(-2). The catalyst activity remained essentially unchanged in a 140 h stability test with an ultra-high mass activity (858.9 A g(-1)@ 1.5 V), which was far superior to commercial RuO2 and most previously reported noble metal-based acidic OER catalysts. The experimental results showed that the effect of more oxygen vacancies and the heterointerfaces of manganese ruthenium oxides broke the intrinsic activity limitation, provided more active sites for the OER, accelerated reaction kinetics, and improved the stability of the catalyst. The excellent performance of the catalyst suggests that MnO2/RuO2 provides a new idea for the design and study of heterointerfaces in metal oxide nanomaterials.
引用
收藏
页码:10325 / 10332
页数:8
相关论文
共 53 条
[1]   Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts That Self-Assemble in Situ [J].
Bloor, Leanne G. ;
Molina, Pedro I. ;
Symes, Mark D. ;
Cronin, Leroy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (08) :3304-3311
[2]   Scientific aspects of polymer electrolyte fuel cell durability and degradation [J].
Borup, Rod ;
Meyers, Jeremy ;
Pivovar, Bryan ;
Kim, Yu Seung ;
Mukundan, Rangachary ;
Garland, Nancy ;
Myers, Deborah ;
Wilson, Mahlon ;
Garzon, Fernando ;
Wood, David ;
Zelenay, Piotr ;
More, Karren ;
Stroh, Ken ;
Zawodzinski, Tom ;
Boncella, James ;
McGrath, James E. ;
Inaba, Minoru ;
Miyatake, Kenji ;
Hori, Michio ;
Ota, Kenichiro ;
Ogumi, Zempachi ;
Miyata, Seizo ;
Nishikata, Atsushi ;
Siroma, Zyun ;
Uchimoto, Yoshiharu ;
Yasuda, Kazuaki ;
Kimijima, Ken-ichi ;
Iwashita, Norio .
CHEMICAL REVIEWS, 2007, 107 (10) :3904-3951
[3]   Electronic modulation of iridium-molybdenum oxides with a low crystallinity for high-efficiency acidic oxygen evolution reaction [J].
Chen, Xiaojie ;
Li, Weimo ;
Song, Na ;
Zhong, Mengxiao ;
Yan, Su ;
Xu, Jiaqi ;
Zhu, Wendong ;
Wang, Ce ;
Lu, Xiaofeng .
CHEMICAL ENGINEERING JOURNAL, 2022, 440
[4]   Dissolution of Noble Metals during Oxygen Evolution in Acidic Media [J].
Cherevko, Serhiy ;
Zeradjanin, Aleksandar R. ;
Topalov, Angel A. ;
Kulyk, Nadiia ;
Katsounaros, Ioannis ;
Mayrhofer, Karl J. J. .
CHEMCATCHEM, 2014, 6 (08) :2219-2223
[5]   Model study on the stability of carbon support materials under polymer electrolyte fuel cell cathode operation conditions [J].
Colmenares, L. C. ;
Wurth, A. ;
Jusys, Z. ;
Behm, R. J. .
JOURNAL OF POWER SOURCES, 2009, 190 (01) :14-24
[6]   The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis [J].
Dau, Holger ;
Limberg, Christian ;
Reier, Tobias ;
Risch, Marcel ;
Roggan, Stefan ;
Strasser, Peter .
CHEMCATCHEM, 2010, 2 (07) :724-761
[7]   Cobweb-Inspired Microenvironment-Targeting Nanosystem with Sequential Multiple-Stage Stimulus-Response Capacity for Ischaemic Tissue Repair [J].
Ding, Xiaoyu ;
Xing, Xiaowen ;
Liu, Jianfeng ;
Zhu, Pengchong ;
Wang, Cui ;
Bai, Rui ;
Kong, Bo ;
Zeng, Chuyang ;
Zhang, Wei ;
Yue, Yin ;
Zhang, Haitao ;
Xiang, Jiajia ;
Yuan, Zengqiang ;
Liu, Zhiqiang .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (32)
[8]  
Fan YX, 2021, ADV MATER, V33, DOI [10.1002/adma.202003956, 10.1002/adma.202004243]
[9]   Robust Th-MOF-Supported Semirigid Single-Metal-Site Catalyst for an Efficient Acidic Oxygen Evolution Reaction [J].
Gao, Zhi ;
Lai, Yulian ;
Gong, Lele ;
Zhang, Lipeng ;
Xi, Shibo ;
Sun, Jian ;
Zhang, Linjuan ;
Luo, Feng .
ACS CATALYSIS, 2022, 12 (15) :9101-9113
[10]   Experimental and Theoretical Validation of High Efficiency and Robust Electrocatalytic Response of One-Dimensional (1D) (Mn,Ir)O2:10F Nanorods for the Oxygen Evolution Reaction in PEM-Based Water Electrolysis [J].
Ghadge, Shrinath Dattatray ;
Velikokhatnyi, Oleg I. ;
Datta, Moni K. ;
Shanthi, Pavithra M. ;
Tan, Susheng ;
Damodaran, Krishnan ;
Kumta, Prashant N. .
ACS CATALYSIS, 2019, 9 (03) :2134-2157