LINEAR CANONICAL WAVELET FRAMES AND THEIR STABILITY

被引:4
作者
Shah, Firdous a. [1 ]
Teali, Aajaz a. [1 ]
Rahimi, Asghar [2 ]
机构
[1] Univ Kashmir, Dept Math, South Campus, Anantnag 192101, Jammu & Kashmir, India
[2] Univ Maragheh, Dept Math, Maragheh, Iran
关键词
Canonical Wavelet; Frame; Stability; Linear Canonical Transform; Unimodular Matrix; TRANSFORM;
D O I
10.30546/1683-6154.23.2.2024.159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this study is to address this issue by constructing a novel family of wavelets in L-2(R) based on the linear canonical transform having certain extra degrees of freedom. At the outset, we present a necessary condition and three sufficient conditions for the canonical wavelet system {psi(H)(ma0, nb0) (t) : m, n is an element of Z, H = (A, B, C, D) } to be a frame for L-2(R) without any decay assumptions on the generator of the system. Secondly, we show that under certain assumptions, a canonical wavelet frame remains a frame in L-2(R) when the generator of the wavelet frame psi or the dilation and translation parameters a(0) and b(0) are perturbed.
引用
收藏
页码:159 / 181
页数:23
相关论文
共 37 条
[1]   Stability theorems for Fourier frames and wavelet Riesz bases [J].
Balan, R .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (05) :499-504
[2]  
Carrizo I., 2003, Anal. Theory Appl, V19, P238, DOI [10.1007/BF02835283, DOI 10.1007/BF02835283]
[3]  
Casazza P., 2004, Contemp. Math., V345, P87, DOI [10.1090/conm/345/06242, DOI 10.1090/conm/345/06242]
[4]   Stability of wavelet frames with matrix dilations [J].
Christensen, O ;
Sun, WC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (03) :831-842
[5]   A PALEY-WIENER THEOREM FOR FRAMES [J].
CHRISTENSEN, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (07) :2199-2201
[6]  
Christensen O, 1997, MATH NACHR, V185, P33
[7]  
Christensen O., 2016, INTRO FRAMES RIESZ B, V2nd
[8]   INEQUALITIES OF LITTLEWOOD-PALEY TYPE FOR FRAMES AND WAVELETS [J].
CHUI, CK ;
SHI, XL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) :263-277
[10]   Continuous wavelet frames on the sphere: The group-theoretic approach revisited [J].
Dahlke, S. ;
De Mari, F. ;
De Vito, E. ;
Hansen, M. ;
Hasannasab, M. ;
Quellmalz, M. ;
Steidl, G. ;
Teschke, G. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 56 :123-149