ZnTe/SnS2 heterojunction for photo-electrocatalysis of CO2 to CO

被引:6
作者
Gao, Xiaowu [1 ,2 ]
Li, Nan [1 ]
Li, Peize [1 ]
Wei, Yan [1 ]
Huang, Qikang [1 ,2 ]
Akhtar, Kalsoom [3 ]
Bakhsh, Esraa M. [3 ]
Khan, Sher Bahadar [3 ]
Shen, Yan [1 ]
Wang, Mingkui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Luoyu Rd 1037, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, China EU Inst Clean & Renewable Energy, Luoyu Rd 1037, Wuhan 430074, Peoples R China
[3] King Abdulaziz Univ, Fac Sci, Dept Chem, POB 80203, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Photo-electrochemical CO2 reduction; Heterojunction; Interfacial engineering; CARBON-DIOXIDE; REDUCTION; LIGHT; HETEROSTRUCTURE; KINETICS;
D O I
10.1016/j.electacta.2024.144603
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Photoelectrochemical (PEC) reduction of CO2 is a promising strategy to convert CO2 into chemical fuels for alleviating environmental crisis. However, modulation of photo-electrocatalytic processes to obtain a desired performance remains challenges due to the complicated PEC kinetics for CO2 reduction. Herein, we present ZnTe/SnS2 type II heterojunction photo-catalyst that facilitates light absorption for PEC reduction of CO2 toward CO production with an improved selectivity and photo-stability compared to the pure ZnTe electrode. The study of charge transfer at the ZnTe/SnS2 heterojunction interface with density functional theory (DFT) calculation and scanning electrochemical microscopy (SECM) characterization reveals that the photo-generated charge by ZnTe can flow quickly through the ZnTe/SnS2 interface to participate CO2 reduction reaction driven by the built-in electric potential of the type II heterojunction. The ZnTe/SnS2 photocathode achieves a photocurrent density of 2.35 mA center dot cm(-2) and a CO faradic efficiency of 87 % at -1.78 V (vs. Fc(+)/Fc) under standard illumination in a CO2-saturated tetrabutylammonium hexafluorophosphate in acetonitrile electrolyte, and retains approximately 87 % of its initial photocurrent after one-hour of continuous illumination test. Consequently, a generation rate of 56.0 mu M center dot cm(-2)center dot h(-1) for CO can be obtained on this electrode.
引用
收藏
页数:8
相关论文
共 57 条
[1]   Inhibiting the Hydrogen Evolution Reaction (HER) with Proximal Cations: A Strategy for Promoting Selective Electrocatalytic Reduction [J].
Barlow, Jeffrey M. ;
Ziller, Joseph W. ;
Yang, Jenny Y. .
ACS CATALYSIS, 2021, 11 (13) :8155-8164
[2]   Grain boundary-abundant copper nanoribbons on balanced gas-liquid diffusion electrodes for efficient CO2 electroreduction to C2H4 [J].
Bian, Lei ;
Zhang, Zi-Yang ;
Tian, Hao ;
Tian, Na -Na ;
Ma, Zhi ;
Wang, Zhong-Li .
CHINESE JOURNAL OF CATALYSIS, 2023, 54 :199-211
[3]   A mechanistic study of molecular CO2 interaction and adsorption on carbon implanted SnS2 thin film for photocatalytic CO2 reduction activity [J].
Billo, Tadesse ;
Shown, Indrajit ;
Anbalagan, Aswin Kumar ;
Effendi, Tirta Amerta ;
Sabbah, Amr ;
Fu, Fang-Yu ;
Chu, Che-Men ;
Woon, Wei-Yen ;
Chen, Ruei-San ;
Lee, Chih-Hao ;
Chen, Kuei-Hsien ;
Chen, Li-Chyong .
NANO ENERGY, 2020, 72 (72)
[4]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[5]   Using Light and Electrons to Bend Carbon Dioxide: Developing and Understanding Catalysts for CO2 Conversion to Fuels and Feedstocks [J].
Cohen, Kailyn Y. ;
Evans, Rebecca ;
Dulovic, Stephanie ;
Bocarsly, Andrew B. .
ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (07) :944-954
[6]   Selective CO2 Reduction on Zinc Electrocatalyst: The Effect of Zinc Oxidation State Induced by Pretreatment Environment [J].
Dang Le Tri Nguyen ;
Jee, Michael Shincheon ;
Won, Da Hye ;
Jung, Hyejin ;
Oh, Hyung-Suk ;
Min, Byoung Koun ;
Hwang, Yun Jeong .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (12) :11377-11386
[7]   Bi catalysts supported on GaN nanowires toward efficient photoelectrochemical CO2 reduction [J].
Dong, Wan Jae ;
Navid, Ishtiaque Ahmed ;
Xiao, Yixin ;
Lee, Tae Hyung ;
Lim, Jin Wook ;
Lee, Donghwa ;
Jang, Ho Won ;
Lee, Jong-Lam ;
Mi, Zetian .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (14) :7869-7877
[8]   In situ synthesis of ZnO/ZnTe common cation heterostructure and its visible-light photocatalytic reduction of CO2 into CH4 [J].
Ehsan, Muhammad Fahad ;
He, Tao .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 166 :345-352
[9]   2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis [J].
Fu, Qiang ;
Han, Jiecai ;
Wang, Xianjie ;
Xu, Ping ;
Yao, Tai ;
Zhong, Jun ;
Zhong, Wenwu ;
Liu, Shengwei ;
Gao, Tangling ;
Zhang, Zhihua ;
Xu, Lingling ;
Song, Bo .
ADVANCED MATERIALS, 2021, 33 (06)
[10]   Transition Metal Chalcogenides as a Versatile and Tunable Platform for Catalytic CO2 and N2 Electroreduction [J].
Giuffredi, Giorgio ;
Asset, Tristan ;
Liu, Yuanchao ;
Atanassov, Plamen ;
Di Fonzo, Fabio .
ACS MATERIALS AU, 2021, 1 (01) :6-36