Robust Integrative Analysis via Quantile Regression with and

被引:1
作者
Zeng, Hao [1 ]
Wan, Chuang [2 ]
Zhong, Wei [3 ,4 ]
Liu, Tuo [3 ,4 ]
机构
[1] Xiamen Univ, Paula & Gregory Chow Inst Studies Econ, Xiamen 361005, Fujian, Peoples R China
[2] Jinan Univ, Sch Econ, Dept Stat, Guangzhou 510632, Peoples R China
[3] Xiamen Univ, WISE, MOE Key Lab Econometr, Xiamen 361005, Fujian, Peoples R China
[4] Xiamen Univ, Dept Stat & Data Sci SOE, Xiamen 361005, Fujian, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
Homogeneity; Integrative analysis; Quantile regression; Robustness; Sparsity; NONCONCAVE PENALIZED LIKELIHOOD; TUNING PARAMETER SELECTION; CLIPPED ABSOLUTE DEVIATION; VARIABLE SELECTION; DIVERGING NUMBER; MODEL SELECTION; CRITERION; LASSO;
D O I
10.1016/j.jspi.2024.106196
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Integrative analysis plays a critical role in integrating heterogeneous data from multiple datasets to provide a comprehensive view of the overall data features. However, in multiple datasets, outliers and heavy -tailed data can render least squares estimation unreliable. In response, we propose a Robust Integrative Analysis via Quantile Regression (RIAQ) that accounts for homogeneity and sparsity in multiple datasets. The RIAQ approach is not only able to identify latent homogeneous coefficient structures but also recover the sparsity of high -dimensional covariates via double penalty terms. The integration of sample information across multiple datasets improves estimation efficiency, while a sparse model improves model interpretability. Furthermore, quantile regression allows the detection of subgroup structures under different quantile levels, providing a comprehensive picture of the relationship between response and high -dimensional covariates. We develop an efficient alternating direction method of multipliers (ADMM) algorithm to solve the optimization problem and study its convergence. We also derive the parameter selection consistency of the modified Bayesian information criterion. Numerical studies demonstrate that our proposed estimator has satisfactory finite -sample performance, especially in heavy -tailed cases.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Incorporating Graphical Structure of Predictors in Sparse Quantile Regression
    Wang, Zhanfeng
    Liu, Xianhui
    Tang, Wenlu
    Lin, Yuanyuan
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (03) : 783 - 792
  • [32] Bayesian effect selection in structured additive quantile regression
    Rappl, Anja
    Carlan, Manuel
    Kneib, Thomas
    Klokman, Sebastiaan
    Bergherr, Elisabeth
    [J]. STATISTICAL MODELLING, 2024,
  • [33] Quantile regression for additive coefficient models in high dimensions
    Fan, Zengyan
    Lian, Heng
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 164 : 54 - 64
  • [34] Adaptive penalized quantile regression for high dimensional data
    Zheng, Qi
    Gallagher, Colin
    Kulasekera, K. B.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (06) : 1029 - 1038
  • [35] Quantile regression for robust inference on varying coefficient partially nonlinear models
    Jing Yang
    Fang Lu
    Hu Yang
    [J]. Journal of the Korean Statistical Society, 2018, 47 : 172 - 184
  • [36] Robust quantile regression analysis for probabilistic modelling of S-N curves
    Zou, Qingrong
    Zhao, Jianxi
    Wen, Jici
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2023, 167
  • [37] Quantile regression for robust inference on varying coefficient partially nonlinear models
    Yang, Jing
    Lu, Fang
    Yang, Hu
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2018, 47 (02) : 172 - 184
  • [38] Robust and smoothing variable selection for quantile regression models with longitudinal data
    Fu, Z. C.
    Fu, L. Y.
    Song, Y. N.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2600 - 2624
  • [39] A Quantile Regression Analysis of the Effect of Farmers' Attitudes and Perceptions on Market Participation
    Kostov, Philip
    Davidova, Sophia
    [J]. JOURNAL OF AGRICULTURAL ECONOMICS, 2013, 64 (01) : 112 - 132
  • [40] From regression rank scores to robust inference for censored quantile regression
    Sun, Yuan
    He, Xuming
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (04): : 1126 - 1149