Robust Integrative Analysis via Quantile Regression with and

被引:1
|
作者
Zeng, Hao [1 ]
Wan, Chuang [2 ]
Zhong, Wei [3 ,4 ]
Liu, Tuo [3 ,4 ]
机构
[1] Xiamen Univ, Paula & Gregory Chow Inst Studies Econ, Xiamen 361005, Fujian, Peoples R China
[2] Jinan Univ, Sch Econ, Dept Stat, Guangzhou 510632, Peoples R China
[3] Xiamen Univ, WISE, MOE Key Lab Econometr, Xiamen 361005, Fujian, Peoples R China
[4] Xiamen Univ, Dept Stat & Data Sci SOE, Xiamen 361005, Fujian, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
Homogeneity; Integrative analysis; Quantile regression; Robustness; Sparsity; NONCONCAVE PENALIZED LIKELIHOOD; TUNING PARAMETER SELECTION; CLIPPED ABSOLUTE DEVIATION; VARIABLE SELECTION; DIVERGING NUMBER; MODEL SELECTION; CRITERION; LASSO;
D O I
10.1016/j.jspi.2024.106196
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Integrative analysis plays a critical role in integrating heterogeneous data from multiple datasets to provide a comprehensive view of the overall data features. However, in multiple datasets, outliers and heavy -tailed data can render least squares estimation unreliable. In response, we propose a Robust Integrative Analysis via Quantile Regression (RIAQ) that accounts for homogeneity and sparsity in multiple datasets. The RIAQ approach is not only able to identify latent homogeneous coefficient structures but also recover the sparsity of high -dimensional covariates via double penalty terms. The integration of sample information across multiple datasets improves estimation efficiency, while a sparse model improves model interpretability. Furthermore, quantile regression allows the detection of subgroup structures under different quantile levels, providing a comprehensive picture of the relationship between response and high -dimensional covariates. We develop an efficient alternating direction method of multipliers (ADMM) algorithm to solve the optimization problem and study its convergence. We also derive the parameter selection consistency of the modified Bayesian information criterion. Numerical studies demonstrate that our proposed estimator has satisfactory finite -sample performance, especially in heavy -tailed cases.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Efficient robust doubly adaptive regularized regression with applications
    Karunamuni, Rohana J.
    Kong, Linglong
    Tu, Wei
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (07) : 2210 - 2226
  • [12] Subset selection in quantile regression analysis via alternative Bayesian information criteria and heuristic optimization
    Dunder, Emre
    Gumustekin, Serpil
    Murat, Naci
    Cengiz, Mehmet Ali
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 11091 - 11098
  • [13] Bayesian adaptive Lasso quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    Benoit, Dries F.
    STATISTICAL MODELLING, 2012, 12 (03) : 279 - 297
  • [14] Robust Inference for Censored Quantile Regression
    Tang, Yuanyuan
    Wang, Xiaorui
    Zhu, Jianming
    Lin, Hongmei
    Tang, Yanlin
    Tong, Tiejun
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024,
  • [15] Sparse Composite Quantile Regression in Ultrahigh Dimensions With Tuning Parameter Calibration
    Gu, Yuwen
    Zou, Hui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 7132 - 7154
  • [16] INFERENCE FOR SINGLE-INDEX QUANTILE REGRESSION MODELS WITH PROFILE OPTIMIZATION
    Ma, Shujie
    He, Xuming
    ANNALS OF STATISTICS, 2016, 44 (03): : 1234 - 1268
  • [17] GLOBALLY ADAPTIVE QUANTILE REGRESSION WITH ULTRA-HIGH DIMENSIONAL DATA
    Zheng, Qi
    Peng, Limin
    He, Xuming
    ANNALS OF STATISTICS, 2015, 43 (05): : 2225 - 2258
  • [18] Sparse quantile regression
    Chen, Le-Yu
    Lee, Sokbae
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 2195 - 2217
  • [19] High-dimensional robust regression with Lq-loss functions
    Wang, Yibo
    Karunamuni, Rohana J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [20] Robust precision matrix estimation via weighted median regression with regularization
    Chun, Hyonho
    Lee, Myung Hee
    Kim, Sung-Ho
    Oh, Jihwan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2018, 46 (02): : 265 - 278