First order distinguishability of sparse random graphs

被引:0
|
作者
Hershko, Tal [1 ]
Zhukovskii, Maksim [2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Univ Sheffield, Sheffield, S Yorkshire, England
来源
PROCEEDINGS OF THE 39TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS 2024 | 2024年
关键词
first order logic; random graphs; zero-one laws; quantifier depth; distinguishability of graphs; graph isomorphism; asymmetry of graphs; Liouville numbers;
D O I
10.1145/3661814.3662117
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of distinguishing between two independent samples G(n)(1), G(n)(2) of a binomial random graph G(n, p) by first order (FO) sentences. Shelah and Spencer proved that, for a constant alpha is an element of(0, 1), G(n, n(-alpha)) obeys FO zero-one law if and only if alpha is irrational. Therefore, for irrational alpha is an element of(0, 1), any fixed FO sentence does not distinguish between G(n)(1), G(n)(2) with asymptotical probability 1 (w.h.p.) as n ->infinity. We show that the minimum quantifier depth ka of a FO sentence G(n)(1), G(n)(2) = G(n)(1), G(n)(2)(G(n)(1), G(n)(2)) distinguishing between G(n)(1), G(n)(2) depends on how closely a can be approximated by rationals: for all non-Liouville alpha is an element of (0, 1), k(alpha) = Omega(ln ln lnn) w.h.p.; there are irrational alpha is an element of (0, 1) with ka that grow arbitrarily slowly w.h.p.; k(alpha) = Op ( ln n/ln ln n) for all alpha is an element of(0, 1). The main ingredients in our proofs are a novel randomized algorithm that generates asymmetric strictly balanced graphs as well as a new method to study symmetry groups of randomly perturbed graphs.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] The largest eigenvalue of sparse random graphs
    Krivelevich, M
    Sudakov, B
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (01): : 61 - 72
  • [42] Largest sparse subgraphs of random graphs
    Fountoulakis, Nikolaos
    Kang, Ross J.
    McDiarmid, Colin
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 232 - 244
  • [43] FLOODING IN WEIGHTED SPARSE RANDOM GRAPHS
    Amini, Hamed
    Draief, Moez
    Lelarge, Marc
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 1 - 26
  • [44] LARGE HOLES IN SPARSE RANDOM GRAPHS
    FRIEZE, AM
    JACKSON, B
    COMBINATORICA, 1987, 7 (03) : 265 - 274
  • [45] Hamiltonian completions of sparse random graphs
    Gamarnik, D
    Sviridenko, M
    DISCRETE APPLIED MATHEMATICS, 2005, 152 (1-3) : 139 - 158
  • [46] Uniformly Random Colourings of Sparse Graphs
    Hurley, Eoin
    Pirot, Francois
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1357 - 1370
  • [47] Sparse Graphs: Metrics and Random Models
    Bollobas, Bela
    Riordan, Oliver
    RANDOM STRUCTURES & ALGORITHMS, 2011, 39 (01) : 1 - 38
  • [48] Sparse random graphs: Eigenvalues and eigenvectors
    Tran, Linh V.
    Vu, Van H.
    Wang, Ke
    RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (01) : 110 - 134
  • [49] Sparse Quasi-Random Graphs
    Fan Chung
    Ronald Graham
    Combinatorica, 2002, 22 : 217 - 244
  • [50] The cover time of sparse random graphs
    Cooper, Colin
    Frieze, Alan
    RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (1-2) : 1 - 16