First order distinguishability of sparse random graphs

被引:0
|
作者
Hershko, Tal [1 ]
Zhukovskii, Maksim [2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Univ Sheffield, Sheffield, S Yorkshire, England
来源
PROCEEDINGS OF THE 39TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS 2024 | 2024年
关键词
first order logic; random graphs; zero-one laws; quantifier depth; distinguishability of graphs; graph isomorphism; asymmetry of graphs; Liouville numbers;
D O I
10.1145/3661814.3662117
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of distinguishing between two independent samples G(n)(1), G(n)(2) of a binomial random graph G(n, p) by first order (FO) sentences. Shelah and Spencer proved that, for a constant alpha is an element of(0, 1), G(n, n(-alpha)) obeys FO zero-one law if and only if alpha is irrational. Therefore, for irrational alpha is an element of(0, 1), any fixed FO sentence does not distinguish between G(n)(1), G(n)(2) with asymptotical probability 1 (w.h.p.) as n ->infinity. We show that the minimum quantifier depth ka of a FO sentence G(n)(1), G(n)(2) = G(n)(1), G(n)(2)(G(n)(1), G(n)(2)) distinguishing between G(n)(1), G(n)(2) depends on how closely a can be approximated by rationals: for all non-Liouville alpha is an element of (0, 1), k(alpha) = Omega(ln ln lnn) w.h.p.; there are irrational alpha is an element of (0, 1) with ka that grow arbitrarily slowly w.h.p.; k(alpha) = Op ( ln n/ln ln n) for all alpha is an element of(0, 1). The main ingredients in our proofs are a novel randomized algorithm that generates asymmetric strictly balanced graphs as well as a new method to study symmetry groups of randomly perturbed graphs.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Sparse Random Graphs with Clustering
    Bollobas, Bela
    Janson, Svante
    Riordan, Oliver
    RANDOM STRUCTURES & ALGORITHMS, 2011, 38 (03) : 269 - 323
  • [22] Dismantling sparse random graphs
    Department of Mathematics, Uppsala University, PO Box 480, SE-75.1 06 Uppsala, Sweden
    不详
    Comb. Probab. Comput., 2008, 2 (259-264):
  • [23] The diameter of sparse random graphs
    Fernholz, Daniel
    Ramachandran, Vijaya
    RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (04) : 482 - 516
  • [24] TREES IN SPARSE RANDOM GRAPHS
    DELAVEGA, WF
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 45 (01) : 77 - 85
  • [25] Cycles in sparse random graphs
    Marinari, Enzo
    Van Kerrebroeck, Valery
    INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2007 (IW-SMI 2007), 2008, 95
  • [26] The Diameter of Sparse Random Graphs
    Riordan, Oliver
    Wormald, Nicholas
    COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (5-6): : 835 - 926
  • [27] Dismantling sparse random graphs
    Janson, Svante
    Thomason, Andrew
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (02): : 259 - 264
  • [28] On the Rigidity of Sparse Random Graphs
    Linial, Nati
    Mosheiff, Jonathan
    JOURNAL OF GRAPH THEORY, 2017, 85 (02) : 466 - 480
  • [29] RANDOM SUBGRAPHS IN SPARSE GRAPHS
    Joos, Felix
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) : 2350 - 2360
  • [30] Random perturbation of sparse graphs
    Hahn-Klimroth, Max
    Maesaka, Giulia S.
    Mogge, Yannick
    Mohr, Samuel
    Parczyk, Olaf
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):