First order distinguishability of sparse random graphs

被引:0
|
作者
Hershko, Tal [1 ]
Zhukovskii, Maksim [2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Univ Sheffield, Sheffield, S Yorkshire, England
来源
PROCEEDINGS OF THE 39TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS 2024 | 2024年
关键词
first order logic; random graphs; zero-one laws; quantifier depth; distinguishability of graphs; graph isomorphism; asymmetry of graphs; Liouville numbers;
D O I
10.1145/3661814.3662117
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of distinguishing between two independent samples G(n)(1), G(n)(2) of a binomial random graph G(n, p) by first order (FO) sentences. Shelah and Spencer proved that, for a constant alpha is an element of(0, 1), G(n, n(-alpha)) obeys FO zero-one law if and only if alpha is irrational. Therefore, for irrational alpha is an element of(0, 1), any fixed FO sentence does not distinguish between G(n)(1), G(n)(2) with asymptotical probability 1 (w.h.p.) as n ->infinity. We show that the minimum quantifier depth ka of a FO sentence G(n)(1), G(n)(2) = G(n)(1), G(n)(2)(G(n)(1), G(n)(2)) distinguishing between G(n)(1), G(n)(2) depends on how closely a can be approximated by rationals: for all non-Liouville alpha is an element of (0, 1), k(alpha) = Omega(ln ln lnn) w.h.p.; there are irrational alpha is an element of (0, 1) with ka that grow arbitrarily slowly w.h.p.; k(alpha) = Op ( ln n/ln ln n) for all alpha is an element of(0, 1). The main ingredients in our proofs are a novel randomized algorithm that generates asymmetric strictly balanced graphs as well as a new method to study symmetry groups of randomly perturbed graphs.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] First-order definability of trees and sparse random graphs
    Bohman, Tom
    Frieze, Alan
    Luczak, Tomasz
    Pikhurko, Oleg
    Smyth, Clifford
    Spencer, Joel
    Verbitsky, Oleg
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (03): : 375 - 400
  • [2] First-order and monadic properties of highly sparse random graphs
    M. E. Zhukovskii
    L. B. Ostrovskii
    Doklady Mathematics, 2016, 94 : 555 - 557
  • [3] First-order and monadic properties of highly sparse random graphs
    Zhukovskii, M. E.
    Ostrovskii, L. B.
    DOKLADY MATHEMATICS, 2016, 94 (02) : 555 - 557
  • [4] The First-Order Contiguity of Sparse Random Graphs with Prescribed Degrees
    Lefebvre, Nans
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2015), 2015, 9076 : 177 - 188
  • [5] Limiting probabilities of first order properties of random sparse graphs and hypergraphs
    Larrauri, Alberto
    Muller, Tobias
    Noy, Marc
    RANDOM STRUCTURES & ALGORITHMS, 2022, 60 (03) : 506 - 526
  • [6] First return times on sparse random graphs
    Evnin, Oleg
    Horinouchi, Weerawit
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (07)
  • [7] First-order properties of bounded quantifier depth of very sparse random graphs
    Zhukovskii, Maksim E.
    Ostrovskii, Lev B.
    IZVESTIYA MATHEMATICS, 2017, 81 (06) : 1155 - 1167
  • [8] UNIVERSALITY FOR FIRST PASSAGE PERCOLATION ON SPARSE RANDOM GRAPHS
    Bhamidi, Shankar
    van der Hofstad, Remco
    Hooghiemstra, Gerard
    ANNALS OF PROBABILITY, 2017, 45 (04): : 2568 - 2630
  • [9] Deciding first-order properties for sparse graphs
    Dvorak, Zdenek
    Kral', Daniel
    Thomas, Robin
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 133 - 142
  • [10] FIRST PASSAGE PERCOLATION ON SPARSE RANDOM GRAPHS WITH BOUNDARY WEIGHTS
    Leskela, Lasse
    Ngo, Hoa
    JOURNAL OF APPLIED PROBABILITY, 2019, 56 (02) : 458 - 471