Lipid nanoparticle: advanced drug delivery systems for promotion of angiogenesis in diabetic wounds

被引:4
作者
Li, Hui [1 ]
Lin, Ze [1 ]
Ouyang, Lizhi [1 ]
Lin, Chuanlu [1 ]
Zeng, Ruiyin [1 ]
Liu, Guohui [1 ]
Zhou, Wenjuan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Orthoped, 1277 Jiefang Ave, Wuhan 430000, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
Drug delivery; nanoparticle; diabetic wound; lipid; pharmacological therapy; IN-VITRO; EX-VIVO; NANOMEDICINE; MACROPHAGES; COMBINATION; THERAPY; CARRIER; ALPHA;
D O I
10.1080/08982104.2024.2378962
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Diabetic wound is one of the most challenge in healthcare, requiring innovative approaches to promote efficient healing. In recent years, lipid nanoparticle-based drug delivery systems have emerged as a promising strategy for enhancing diabetic wound repair by stimulating angiogenesis. These nanoparticles offer unique advantages, including improved drug stability, targeted delivery, and controlled release, making them promising in enhancing the formation of new blood vessels. In this review, we summarize the emerging advances in the utilization of lipid nanoparticles to deliver angiogenic agents and promote angiogenesis in diabetic wounds. Furthermore, we provide an in-depth exploration of key aspects, including the intricate design and fabrication of lipid nanoparticles, their underlying mechanisms of action, and a comprehensive overview of preclinical studies. Moreover, we address crucial considerations pertaining to safety and the translation of these innovative systems into clinical practice. By synthesizing and analyzing the available knowledge, our review offers valuable insights into the future prospects and challenges associated with utilizing the potential of lipid nanoparticle-based drug delivery systems for promoting robust angiogenesis in the intricate process of diabetic wound healing.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 69 条
[1]   Enhanced In Vivo Wound Healing Efficacy of a Novel Hydrogel Loaded with Copper (II) Schiff Base Quinoline Complex (CuSQ) Solid Lipid Nanoparticles [J].
Abou El-ezz, Doaa ;
Abdel-Rahman, Laila H. ;
Al-Farhan, Badriah Saad ;
Mostafa, Dalia A. ;
Ayad, Eman G. ;
Basha, Maram T. ;
Abdelaziz, Mahmoud ;
Abdalla, Ehab M. .
PHARMACEUTICALS, 2022, 15 (08)
[2]   Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo [J].
Aday, Sezin ;
Hazan-Halevy, Inbal ;
Chamorro-Jorganes, Aranzazu ;
Anwar, Maryam ;
Goldsmith, Meir ;
Beazley-Long, Nicholas ;
Sahoo, Susmita ;
Dogra, Navneet ;
Sweaad, Walid ;
Catapano, Francesco ;
Ozaki-Tan, Sho ;
Angelini, Gianni D. ;
Madeddu, Paolo ;
Benest, Andrew V. ;
Peer, Dan ;
Emanueli, Costanza .
MOLECULAR THERAPY, 2021, 29 (07) :2239-2252
[3]   Microformulations and Nanoformulations of Doxorubicin for Improvement of Its Therapeutic Efficiency [J].
Alavi, Mehran ;
Nokhodchi, Ali .
CRITICAL REVIEWS IN THERAPEUTIC DRUG CARRIER SYSTEMS, 2020, 37 (06) :591-611
[4]   Magnetic pH-responsive poly(methacrylic acid-co-acrylic acid)-co-polyvinylpyrrolidone magnetic nano-carrier for controlled delivery of fluvastatin [J].
Amoli-Diva, Mitra ;
Pourghazi, Kamyar ;
Mashhadizadeh, Mohammad Hossein .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 47 :281-289
[5]   Retinoic acid-loaded solid lipid nanoparticles surrounded by chitosan film support diabetic wound healing in in vivo study [J].
Arantes, Valquiria T. ;
Faraco, Andre A. G. ;
Ferreira, Frederico B. ;
Oliveira, Cleida A. ;
Martins-Santos, Elisangela ;
Cassini-Vieira, Puebla ;
Barcelos, Luciola S. ;
Ferreira, Lucas A. M. ;
Goulart, Gisele A. C. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2020, 188
[6]   Transforming Wound Management: Nanomaterials and Their Clinical Impact [J].
Ashwini, T. ;
Prabhu, Ashlesh ;
Baliga, Vishal ;
Bhat, Shreesha ;
Thenkondar, Siddarth T. ;
Nayak, Yogendra ;
Nayak, Usha Y. .
PHARMACEUTICS, 2023, 15 (05)
[7]   Coupling Lipid Nanoparticle Structure and Automated Single-Particle Composition Analysis to Design Phospholipase-Responsive Nanocarriers [J].
Barriga, Hanna M. G. ;
Pence, Isaac J. ;
Holme, Margaret N. ;
Doutch, James J. ;
Penders, Jelle ;
Nele, Valeria ;
Thomas, Michael R. ;
Carroni, Marta ;
Stevens, Molly M. .
ADVANCED MATERIALS, 2022, 34 (26)
[8]   Systematic Development of Solid Lipid Nanoparticles of Abiraterone Acetate with Improved Oral Bioavailability and Anticancer Activity for Prostate Carcinoma Treatment [J].
Beg, Sarwar ;
Malik, Ankit K. ;
Ansari, Mohammad Javed ;
Malik, Asrar A. ;
Ali, Ahmed Mahmoud Abdelhaleem ;
Theyab, Abdulrahman ;
Algahtani, Mohammad ;
Almalki, Waleed H. ;
Alharbi, Khalid S. ;
Alenezi, Sattam K. ;
Abul Barkat, Md ;
Rahman, Mahfoozur ;
Choudhry, Hani .
ACS OMEGA, 2022, 7 (20) :16968-16979
[9]   Approaches to Modulate the Chronic Wound Environment Using Localized Nucleic Acid Delivery [J].
Berger, Adam G. ;
Chou, Jonathan J. ;
Hammond, Paula T. .
ADVANCES IN WOUND CARE, 2021, 10 (09) :503-528
[10]   Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response [J].
Chen, Jinjin ;
Ye, Zhongfeng ;
Huang, Changfeng ;
Qiu, Min ;
Song, Donghui ;
Li, Yamin ;
Xu, Qiaobing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (34)