Composite Ionogel Electrodes for Polymeric Solid-State Li-Ion Batteries

被引:1
|
作者
Schorr, Noah B. [1 ]
Bhandarkar, Austin [2 ]
Mcbrayer, Josefine D. [1 ]
Talin, A. Alec [2 ]
机构
[1] Sandia Natl Labs, Dept Power Sources R&D, Albuquerque, NM 87123 USA
[2] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA
关键词
solid-state electrolyte; ionogel; polymer electrolyte; Li-ion battery; ELECTROLYTES; TORTUOSITY;
D O I
10.3390/polym16131763
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Realizing rechargeable cells with practical energy and power density requires electrodes with high active material loading, a remaining challenge for solid-state batteries. Here, we present a new strategy based on ionogel-derived solid-state electrolytes (SSEs) to form composite electrodes that enable high active material loading (>10 mg/cm(2), similar to 9 mA/cm(2) at 1C) in a scalable approach for fabricating Li-ion cells. By tuning the precursor and active materials composition incorporated into the composite lithium titanate electrodes, we achieve near-theoretical capacity utilization at C/5 rates and cells capable of stable cycling at 5.85 mA/cm(2) (11.70 A/g) with over 99% average Coulombic efficiency at room temperature. Finally, we demonstrate a complete polymeric solid-state cell with a composite anode and a composite lithium iron phosphate cathode with ionogel SSEs, which is capable of stable cycling at a 1C rate.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Binder-Free Metal Sulfide Composite Nanosheet Array Electrodes for Li-Ion Batteries
    Chen, Huei-Lian
    Wu, Pei-Shan
    Wu, Jih-Jen
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (20) : 17100 - 17106
  • [22] Enhancing electrochemical performance of solid-state Li-ion batteries with composite electrolytes of fibrous LLZTO and PVDF-HFP: The role of LLZTO fiber diameter
    Lee, Kuan-Wei
    Yeh, Shu-Ming
    Ni, Kuo-Hsuan
    Li, Chia-Chen
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [23] Structural origin of low Li-ion conductivity in perovskite solid-state electrolyte
    Xu, Lei
    Zhang, Lifeng
    Hu, Yubing
    Luo, Langli
    NANO ENERGY, 2022, 92
  • [24] In Situ/Operando Methods of Characterizing All-Solid-State Li-Ion Batteries: Understanding Li-Ion Transport during Cycle
    Jena, Anirudha
    Tong, Zizheng
    Bazri, Behrouz
    Iputera, Kevin
    Chang, Ho
    Hu, Shu-Fen
    Liu, Ru-Shi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (31) : 16921 - 16937
  • [25] Hard Carbons for Use as Electrodes in Li-S and Li-ion Batteries
    Pozio, Alfonso
    Di Carli, Mariasole
    Aurora, Annalisa
    Falconieri, Mauro
    Della Seta, Livia
    Prosini, Pier Paolo
    NANOMATERIALS, 2022, 12 (08)
  • [26] High Uptake and Fast Transportation of LiPF6 in Porous Aromatic Framework for Solid-State Li-Ion Batteries
    Zou, Junyan
    Trewin, Abbie
    Ben, Teng
    Qiu, Shilun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (02) : 769 - 774
  • [27] The Electrolyte Diffusion Limitation Impact on the Performance of Polymer Composite Electrodes for Solid-State Lithium-Ion Batteries
    Sergeev, Artem, V
    Napolskiy, Filipp S.
    Itkis, Daniil M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
  • [28] Polycarbonate-based solid polymer electrolytes for Li-ion batteries
    Sun, Bing
    Mindemark, Jonas
    Edstrom, Kristina
    Brandell, Daniel
    SOLID STATE IONICS, 2014, 262 : 738 - 742
  • [29] Solid-State Post Li Metal Ion Batteries: A Sustainable Forthcoming Reality?
    Ferrari, Stefania
    Falco, Marisa
    Munoz-Garcia, Ana Belen
    Bonomo, Matteo
    Brutti, Sergio
    Pavone, Michele
    Gerbaldi, Claudio
    ADVANCED ENERGY MATERIALS, 2021, 11 (43)
  • [30] Li-Ion Permeability of Holey Graphene in Solid State Batteries: A Particle Dynamics Study
    Barrios, Elizabeth A.
    Rains, April A.
    Lin, Yi
    Su, Ji
    Connell, John W.
    Viggiano, Rocco P.
    Dornbusch, Donald A.
    Wu, James J.
    Yamakov, Vesselin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (18) : 21363 - 21370