AI-based pipeline for early screening of lung cancer: integrating radiology, clinical, and genomics data

被引:3
作者
Batra, Ullas [2 ]
Nathany, Shrinidhi [2 ]
Nath, Swarsat Kaushik [1 ]
Jose, Joslia T. [2 ]
Sharma, Trapti [1 ]
Preeti, P. [1 ]
Pasricha, Sunil [2 ]
Sharma, Mansi [2 ]
Arambam, Nevidita [1 ]
Khanna, Vrinda [1 ]
Bansal, Abhishek [2 ]
Mehta, Anurag [2 ]
Rawal, Kamal [1 ]
机构
[1] Amity Univ, Amity Inst Biotechnol, Noida, Uttar Pradesh, India
[2] Rajiv Gandhi Canc Inst & Res Ctr, New Delhi, India
来源
LANCET REGIONAL HEALTH - SOUTHEAST ASIA | 2024年 / 24卷
关键词
Artificial intelligence; Radiology; Oncology; Medical imaging; Lung carcinoma; Lung cancer; INFORMATION;
D O I
10.1016/j.lansea.2024.100352
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background The prognosis of lung carcinoma has changed since the discovery of molecular targets and their specific drugs. Somatic Epidermal Growth Factor Receptor ( EGFR ) mutations have been reported in lung carcinoma, and these mutant proteins act as substrates for targeted therapies. However, in a resource-constrained country like India, panel-based next-generation sequencing cannot be made available to the population at large. Additional challenges such as adequacy of tissue in case of lung core biopsies and locating suitable tumour tissues as a result of innate intratumoral heterogeneity indicate the necessity of an AI-based end -to -end pipeline capable of automatically detecting and learning more effective lung nodule features from CT images and predicting the probability of the EGFR-mutant. This will help the oncologists and patients in resource-limited settings to achieve near-optimal care and appropriate therapy. Methods The EGFR gene sequencing and CT imaging data of 2277 patients with lung carcinoma were included from three cohorts in India and a White population cohort collected from TCIA. Another cohort LIDC-IDRI was used to train the AIPS-Nodule (AIPS-N) model for automatic detection and characterisation of lung nodules. We explored the value of combining the results of the AIPS-N with the clinical factors in the AIPS-Mutation (AIPS-M) model for predicting EGFR genotype, and it was evaluated by area under the curve (AUC). Findings AIPS-N achieved an average AP50 of 70.19% in detecting the location of nodules within the lung region of interest during validation and predicted the score of fi ve lung nodule properties. The AIPS-M machine learning (ML) and deep learning (DL) models achieved AUCs ranging from 0.587 to 0.910. Interpretation The AIPS suggests that CT imaging combined with a fully automated lung-nodule analysis AI system can predict EGFR genotype and identify patients with an EGFR mutation in a cost-effective and non-invasive manner. Copyright (c) 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:13
相关论文
共 30 条
[1]  
[Anonymous], 2022, facebook research detectron 2
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]  
Ba J, 2014, ACS SYM SER
[4]  
Baba Y, 2017, Windowing (CT), DOI [10.53347/rID-52108, DOI 10.53347/RID-52108]
[5]   Influence of Chemotherapy on EGFR Mutation Status Among Patients With Non-Small-Cell Lung Cancer [J].
Bai, Hua ;
Wang, Zhijie ;
Chen, Keneng ;
Zhao, Jun ;
Lee, J. Jack ;
Wang, Shuhang ;
Zhou, Qinghua ;
Zhuo, Minglei ;
Mao, Li ;
An, Tongtong ;
Duan, Jianchun ;
Yang, Lu ;
Wu, Meina ;
Liang, Zhen ;
Wang, Yuyan ;
Kang, Xiaozheng ;
Wang, Jie .
JOURNAL OF CLINICAL ONCOLOGY, 2012, 30 (25) :3077-3083
[6]   A radiogenomic dataset of non-small cell lung cancer [J].
Bakr, Shaimaa ;
Gevaert, Olivier ;
Echegaray, Sebastian ;
Ayers, Kelsey ;
Zhou, Mu ;
Shafiq, Majid ;
Zheng, Hong ;
Benson, Jalen Anthony ;
Zhang, Weiruo ;
Leung, Ann N. C. ;
Kadoch, Michael ;
Hoang, Chuong D. ;
Shrager, Joseph ;
Quon, Andrew ;
Rubin, Daniel L. ;
Plevritis, Sylvia K. ;
Napel, Sandy .
SCIENTIFIC DATA, 2018, 5
[7]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[8]   Automated detection of lung nodules and coronary artery calcium using artificial intelligence on low-dose CT scans for lung cancer screening: accuracy and prognostic value [J].
Chamberlin, Jordan ;
Kocher, Madison R. ;
Waltz, Jeffrey ;
Snoddy, Madalyn ;
Stringer, Natalie F. C. ;
Stephenson, Joseph ;
Sahbaee, Pooyan ;
Sharma, Puneet ;
Rapaka, Saikiran ;
Schoepf, U. Joseph ;
Abadia, Andres F. ;
Sperl, Jonathan ;
Hoelzer, Phillip ;
Mercer, Megan ;
Somayaji, Nayana ;
Aquino, Gilberto ;
Burt, Jeremy R. .
BMC MEDICINE, 2021, 19 (01)
[9]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[10]  
Dandil E, 2014, 2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), P382, DOI 10.1109/SOCPAR.2014.7008037